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PREFACE

This volume constitutes the Proceedings of the IUTAM Symposium on
‘Nonlinear Analysis of Fracture’, held in Cambridge from 3rd to 7th Septem-
ber 1995. Its objective was to assess and place on record the current state of
understanding of this important class of phenomena, from the standpoints
of mathematics, materials science, physics and engineering. All fracture
phenomena are nonlinear; the reason for inclusion of this qualification in
the title was to reflect the intention that emphasis should be placed on
distinctive aspects of nonlinearity, not only with regard to material consti-
tutive behaviour but also with regard to insights gained, particularly from
the mathematics and physics communities, during the recent dramatic ad-
vances in understanding of nonlinear systems in general. The expertise
represented in the Symposium was accordingly very wide, and many of the
world’s greatest authorities in their respective fields participated.

The Symposium remained focussed on issues of practical significance
for fracture phenomena, with concentration on aspects that are still im-
perfectly understood. The most significant unifying issue in this regard is
that of scale: this theme was addressed from several perspectives. One
important aspect is the problem of passing information on one scale up or
down, as an input for analysis at another scale. Although this is not always
the case, it may be that the microscopic process of fracture is understood
in some particular class of materials. The problem then becomes one of
constructing an appropriate model at the macroscopic scale, that retains
the essential features of the microscopic process but avoids unmanageable
complexity. Dually, considering the problem from the macroscopic end, it
is important to assess which particular aspects of the macroscopic stress
field interact directly with the fracture process. In the simplest cases, the
process is driven by the crack tip singularity in the macroscopic field; then,
at least some problems relating to scale disappear. The focus of interest of
course is in the régime where this ‘singularity dominance’ is not realised.
‘Fracture process zones’, and their extent, vary with the material under
consideration: the underlying scales are self-evidently different for compos-
ite materials than for metals, for example, most immediately because of
their very different microstructural features and length scales. Particularly
for brittle materials, local statistical variations can be a major source of
sensitivity to scale and variability of performance.

Dynamical problems present a major challenge: crack stability is still
not completely resolved, even for materials for which elastic stress analysis

ix
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is appropriate. The phenomena are of interest both on laboratory and
terrestrial scales; indeed, much of the recent progress has been achieved by
those whose primary concern is with geophysics.

All of the aspects mentioned above require sound physical modelling
coupled with analysis. In some cases the analysis may be of the classical
kind, while for others the natural approach is numerical simulation. In
all cases, it is important to recognise any simple unifying features, such
as may follow from recognition of similarity or scaling. These Proceedings
address all of these different strands, and provide a reasonable reflection of
understanding as it exists at present.

The Symposium consisted of forty-three lectures, all of which were in-
vited and accorded equal weight in the programme. In addition, two poster
sessions allowed a further twenty-three presentations. Only the content of
the lectures is reflected in this volume, except that a full record of the pro-
gramme features as an Appendix. A few of the lectures are not represented,
mainly because of prior commitments to publish elsewhere.

The International Scientific Committee responsible for the Symposium

comprised the following:
Prof. J.R. Willis (UK) — Chairman

Prof. M.F. Ashby (UK) Prof. D. Gross (Germany)
Prof. G.I. Barenblatt (UK/Russia) Prof. J.W. Hancock (UK)
Prof. P. Duxbury (USA) Prof. R. Madariaga (France)
Prof. L.B. Freund (USA) Prof. V. Tvergaard (Denmark)

The Committee gratefully acknowledges financial support for the Sympo-
sium from the International Union of Theoretical and Applied Mechanics,
the United States Office of Naval Research, AEA Technology, the Royal
Society, and the International Science Foundation.

The smooth running of the Symposium owes much to the unstinting ef-
forts of Tom Gosling, Anne-Marie Harte, John Huber and Alex Korsunsky, -
and it would not have happened at all without a great deal of work before,
during and after, by Lin Hardiman, to whom particular thanks are due.




SCALING IN NONLINEAR FRACTURE MECHANICS

Z. P. BAZANT
Departments of Civil Engrg. and Materials Science
Northwestern University, Evanston, IL 60208 USA

Abstract. The paper! presents a review of recent results on the problem
of size effect (or the scaling problem) in nonlinear fracture mechanics of
quasibrittle materials and on the validity of recent claims that the observed
size effect may be caused by the fractal nature of crack surfaces. The prob-
lem of scaling is approached through dimensional analysis and asymptotic
matching. Large-size and small-size asymptotic expansions of the size effect
on the nominal strength of structures are presented, considering not only
specimens with large notches (or traction-free cracks) but also structures
with no notches. Simple size effect formulas matching the required asymp-
totic properties are given. Regarding the fractal nature of crack surfaces,
it is concluded that it cannot be the cause of the observed size effect.

1. Introduction

Scaling is a salient aspect of all physical theories. Nevertheless, little atten-
tion has been paid to the problem of scaling or size effect in solid mechan-
ics. Up to the middle 1980’s, observations of the size effect on the nominal
strength of a structure have generally been explained by Weibull-type the-
ory of random strength. However, recent in-depth analysis (Bazant and Xi,
1991) has shown that this Weibull-type theory does not capture the essen-
tial cause of size effect for quasibrittle materials such as rocks, toughened
ceramics, concretes, mortars, brittle fiber composites, ice (especially sea
ice), wood particle board and paper, in which the fracture process zone is
not small compared to structural dimensions and large stable crack growth
occurs prior to failure. The dominant source of size effect in these mate-
rials is not statistical but consists in the release of stored energy from the
structure engendered by a large fracture.

By approximate analysis of energy release from the structure, a simple

'Supported partly by NSF grant MSS-911447-6 to Northwestern University and partly
by ACBM Center at Northwestern University.

1
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2 Z.P.BAZANT

size effect law (Bazant 1983, 1984) has been derived for quasibrittle frac-
ture. This law subsequently received extensive justifications, based on: (1)
comparisons with tests of notched fracture specimens of concretes, mortars,
rocks, ceramics, fiber composites (Bazant and Pfeiffer, 1987; Bazant and
Kazemi, 1991, 1992; Bazant, Gettu and Kazemi, 1990; Gettu, Bazant and
Karr, 1991, Bazant, Ozbolt and Eligehausen, 1994; Bazant, Daniel and Li,
1995) as well as unnotched reinforced concrete structures, (2) similitude
in energy release and dimensional analysis, (3) comparison with discrete
element (random particle) numerical modeling of fracture (e.g. Jirdsek and
Bazant, 1995), (4) derivation as a deterministic limit of a nonlocal gener-
alization of Weibull statistical theory of strength (BaZant and Xi, 1991),
and (5) comparison with finite element solutions based on nonlocal model
of damage (Bazant, Ozbolt and Eligehausen, 1994). The simple size effect
law has been shown useful for evaluation of material fracture characteristics
from tests. Important contributions to the study of size effects in quasib-
rittle fracture have also been made by Carpinteri (1986), Planas and Elices
(1988a,b, 1989, 1993), van Mier (1986), and others.

Recently, the fractal nature of crack surfaces in quasibrittle materi-
als (Mandelbrot et al. 1984; Mecholsky and Mackin, 1988; Mosolov and
Borodich, 1992; Borodich, 1992; Xie, 1993; etc.) has been studied inten-
sively. It has been proposed that the crack surface fractality might be an
alternative source of the observed size effect (Carpinteri 1994; Carpinteri
et al. 1993, 1995; Lange et al., 1993, and Saouma et al., 1990, 1994).

This paper outlines a generalized asymptotic theory of scaling of qua-
sibrittle fracture and also explores the possible role of the crack surface
fractality in the size effect.

2. Large-Size Asymptotic Expansion of Size Effect

For the sake of brevity, the analysis will be made in general for fractal
cracks and the nonfractal case will then simply be obtained as a limit case.
Consider a crack representing a fractal curve (Fig. 1la) whose length is
defined as a5 = do(a/ 80)% where d 5 = fractal dimension of the crack curve
(> 1) and §o = lower limit of fractality implied by material microstructure,
which may be regarded as the length of a ruler by which the crack length is
measured (Mandelbrot et al., 1984). Unlike the case of classical, nonfractal
fracture mechanics, the energy W; dissipated per unit length of a fractal
crack cannot be a material constant because the length of a fractal curve
is infinite. Rather, it must be defined as

W;/b = G a (1)
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Figure 1: (a) Von Koch curves as examples of fractal crack at progressive
refinement. (b) Size effect curves obtained for geometrically similar specimens
with nonfractal and fractal cracks and finite size of fracture process zone (pos-
sible transition to horizontal line for nonfractal behavior is shown for D < D)

where b = thickness of the structure (considered to be two-dimensional),
and Gy = fractal fracture energy, of dimension Jm~%~1, A nonfractal
crack is the special case for df = 1, and then Gj; = Gy, representing the
standard fracture energy, of dimension Jm~2).

The rate of macroscopic energy dissipation G, with respect to the
‘smooth’ (projected, Euclidean) crack length a is:

G, = 10W;

T b Oa
(e.g., Borodich, 1992; Mosolov and Borodich, 1992). To characterize the
size effect in geometrically similar structures of different sizes D, we in-
troduce the usual nominal stress oy = P/bD where D = characteristic
size (dimension) of the structure, and P = applied load. If P = Pper =
maximum load, oy is called the nominal strength.

The problem will be analyzed under the following three hypotheses: (1)
Within a certain range of sufficiently small scales, the failure is caused by
propagation of a single fractal crack. (2) The fractal fracture energy, Gy is
a material constant correctly defining energy dissipation. (3) The material
may (but need not) exhibit a material length, c;.

The material length, cs, may be regarded as the size (smooth, or pro-

= Gﬂdfadf_l (2)
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jected) of the fractal fracture process zone in an infinitely large specimen (in
which the structure geometry effects on the process zone disappear). The
special case ¢y = 0 represents the fractal generalization of linear elastic frac-
ture mechanics (LEFM). Alternatively, if we imagine the fracture process
zone to be described by smeared cracking or continuum damage mechanics,
we may define ¢f = (G i/ W,4)/(2=4s) in which W, = energy dissipated per
unit volume of the continuum representing in a smeared way the fracture
process zone (area under the complete stress-strain curve with strain soft-
ening). As still another alternative, in view of nonlinear fracture mechanics
such as the cohesive crack model, we may define ¢; = (EG i/ FA)Y@—ds) in
which E = Young’s modulus and f; = material tensile strength.

We have two basic variables, a and ¢y, both of the dimension of length.
Let us now introduce two dimensionless variables: a« = a/D and 8 = c¢/D.
In view of Buckingham’s theorem of dimensional analysis, the complemen-
tary energy IT* of the structure with a fractal crack may be expressed in
the form:

2
o = % bD?f(a, ) (3)
in which f is a dimensionless continuous function characterizing structure

geometry.

The energy balance during crack propagation (first law of thermodynam-
ics) must be satisfied by nonfractal as well as fractal cracks. The energy
release from the structure as a whole is a global characteristic of the state of
the structure and must be calculated on the basis of the smooth (projected,
Euclidean) crack length a rather than the fractal curve length as, i.e.

om* oWy

da  Oa 4
Substituting (3) and differentiating, we obtain an equation (see Bazant,
1995a,b) containing the derivative g(c,6) = of (e, 8)Oc, which represents
the dimensionless energy release rate. The derivative of (3) must be calcu-
lated at constant load (or constant ox) because, as known from fracture
mechanics, the energy release rate of a crack is the derivative of the com-
plementary energy at constant load, i.e. don/B8a = 0. In this manner

(Bazant, 1995a,b) one obtains the equation oy = VEGer/Dg(ap,0) where
ap = relative crack length o at maximum load. Because g(ap, ) ought to
be a smooth function, we may expand it in a Taylor series about the point
(e, 0) = (v, 0). This leads to the result (Bazant, 1995a,b,c):
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EGor 1 N
on = —f;'—[g(ao,o)+gl(ao,0)%+ﬁgz(ao,o> (%) +] (5)

D
in which g;(cp,0) = 8g(ayg,8)/80, g2(ap,0) = %g(cx,8)/062, ..., all eval-
uated at § = 0. This equation represents the large-size asymptotic series
expansion of the size effect. To obtain a simplified approximation, one may
truncate the asymptotic series after the linear term, i.e.

D )—1/2

on = BfID\s-D/2 (1 + = (6)
Dg

in which Dy and B are certain constants depending on both material and
structure properties, expressed in terms of function g(ayp,0) and its deriva-
tive. For the nonfractal case, df — 1, this reduces to the size effect law
deduced by Bazant (1983, 1984, 1993), which reads oy = Bf}/v/1+ 0, 8 =
D/Dy, in which 8 is called the brittleness number (BaZant and Pfeiffer,
1987).

If only geometrically similar fracture test specimens are considered, aq
is constant (independent of D), and so is Dy. For brittle failures of geomet-
rically similar quasibrittle structures without notches, it is often observed
that the crack lengths at maximum load are approximately geometrically
similar. For concrete structures, the geometric similarity of cracks at max-
imum load has been experimentally demonstrated for diagonal shear of
beams, punching of slabs, torsion, anchor pullout or bar pullout, and bar
splice failure, and is also supported by finite element solutions (e.g. ACI,
1992; Bazant et al. 1994) and discrete element (random particle) simula-
tions (Jirdsek and Bazant, 1995), albeit for only a limited size range of D.
Thus, k,co,Do,a?V and Bf] are all constant. In these typical cases, (6)
describes the dependence of oy on size D only, that is, the size effect. Fig.
1b shows the size effect plot of logon versus log D at constant «g. Two
size effect curves are seen: (1) the fractal curve and (2) the nonfractal curve
(for the latter, the possibility of termination of fractality at the left end is
considered in the plot).

The curve of fractal scaling obtained in Fig. 1b disagrees with the bulk
of experimental evidence (for concrete, see e.g. the review in BaZant et al.
1994); for carbon fiber epoxy composites used in aerospace industry, see
(Bazant, Daniel and Li, 1995). It follows that crack fractality cannot be
the cause of the observed size effect.

What aspect of the fracture process causes the crack fractality to have
no significant effect on scaling of failure? The fracture front in quasibrittle



6 Z.P.BAZANT

materials does not consist of a single crack, but a wide band of microcracks,
which all must form and dissipate energy before the fracture can propagate.
Only very few of the microcracks and slip planes eventually coalesce into
a single continuous crack, which forms the final crack surface with fractal
characteristics. Thus, even though the final crack surface may be to a large
extent fractal, the fractality cannot be relevant for the fracture process zone
advance. Most of the energy is dissipated in the fracture process zone by
microcracks (as well as plastic-frictional slips) that do not become part of
the final crack surface and thus can have nothing to do with the fractality
of the final crack surface.

3. Generalizations and Ramifications of Asymptotic Analysis

Material length c; can be defined as the LEFM-effective length of the frac-
ture process zone, measured in the direction of propagation in a specimen
of infinite size. In that case, § = ¢;/D = (a — ag)/D = a — ag, and so
g(c, 8) reduces to the LEFM function of one variable, g(a). Thus Eq. (6)
yields (BaZant, 1995a,b,c):

and so Eq. (6) takes the form:

ds—1

EGqdsoy’ :

O'N = 7 fl fao (8)
g'(ao)cs + g(an)D

The advantage of this equation is that its parameters are directly the ma-
terial fracture parameters. For dy =1, Eq. (8) reduces to the form of size
effect law derived in a different manner by Bazant and Kazemi (1990, 1991)
(also Eq. 12.2.11 in Bazant and Cedolin, 1991). Fitting this equation to
size effect data, which can be done easily by rearranging the equation to a
linear regression plot, one can determine Gy or Gy and cs. This serves as
the basis of the size effect method for measuring the material fracture pa-
rameters, which has been adopted by RILEM as an international standard
for concrete.

More generally, one may introduce general dimensionless variables £ =
0" = (c;/D)",h(cg,€) = [g(c0,6]", with any r > 0. Then, expanding
the function h(ag,£) in a Taylor series with respect to £, one obtains by
a similar procedure as before a more general large-size asymptotic series
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expansion (whose nonfractal special case was derived by BaZant in 1985
(see ACI, 1992):
_ _ —1/2r
oN =0p [ﬂ’"+1+n1ﬂ T+ kof 2T+n35”3r+...] (9)
in which 8 = D/Dy and k1, K2, ... are certain constants. However, based
on experiments as well some limit properties, it seems that r = 1 is the
appropriate value for most cases.

The large-size asymptotic expansion (9) diverges for D — 0. For small
sizes, one needs a small-size asymptotic expansion. The previous energy
release rate equation (0% /E)Dg(a, ) = Ger is not meaningful for the small
size limit because the zone of distributed cracking is relatively large. In
that case, the material failure must be characterized by W; rather than
G;. In that case, the energy balance equation (first law) for don/0a = 0
(second law) must be written in the form o%[¥(a,n)]"/E = W; where
(e, ) = dimensionless function of dimensionless variables & = a/D and
n = (D/cg)" = 977 (variable 9 is now unsuitable because ¢ — oo for
D — 0), and exponent 7 > 0 is introduced for the sake of generality, as
before. Because, for very small D, there is a diffuse failure zone, a must
now be interpreted as the characteristic size of the failure zone, e.g., the
length of cracking band. The same procedure as before now leads to the
result (BaZant, 1995a,c):

]—1/21"

on =0p [L+ +5267 + 03" + ... (10)

in which 8 = D/Dqy and op, Dy, by, b3, ... are certain constants depending
on both material and structure properties and can be expressed in terms
of function (g, 0) and its derivatives. Eq. (10) represents the small-size
asymptotic series expansion.

An important common characteristic of the large-size and small-size
asymptotic series expansions in Egs. (9) and (10) is that they have the
first two terms in common. Therefore, if either series is truncated after the
second term, it reduces to the same generalized size effect law derived by
Bazant in 1985 (see ACI, 1992):

oy =ap(l+07) " (11)

Because this law is anchored to the asymptotic cases on both sides and
shares with both expansions the first two terms, it may be regarded as a
matched asymptotic (e.g. Bender and Orszag, 1978), that is, an interme-
diate approximation of uniform applicability for any size. The valuer =1
appears, for several reasons, most appropriate.
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Figure 2: (a) Size effect curves obtained for unnotched specimens, nonfractal
and fractal. (b) The surface of universal size effect law for notched as well as
unnotched fracture specimens

A different approach is needed for unnotched quasibrittle structures that
reach the maximum load when the crack initiates from a smooth surface,
as exemplified by the standardized bending test of modulus of rupture f,
of a plain concrete beam. Applying the size effect law in Eq. (6 for the
case ap — 0 is impossible because g(ap,0) vanishes as o — 0. To deal
with this case, one must truncate the large-size asymptotic series expansion
only after the third term. Then, considering that r = 1 and g(cp,0) =
0, restricting attention to the nonfractal case only, and using a similar
procedure as that which led to Eq. (8), one obtains after some further
asymptotic approximations (BaZant, 1995a,c) the following size effect law
(Fig. 2a) for failures at crack initiation from a smooth surface:

%2) = [1 — 0.06344" (0) E—f] (12)

ox =B (1+ o

(the first part of this equation was derived by BaZant and Li (1995) in a
different manner). Here f* is the modulus of rupture for an infinitely large
beam (but not so large that Weibull statistical size effect would become
significant), and B is a dimensionless parameter. This equation can be
arranged as a linear regression plot of o versus 1/D, which is again helpful
for easy identification of the constants from tests.
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Asymptotic matching of the three asymptotic expansions, namely: (1)
the large-size expansion for large oy, (2) the large-size expansion for van-
ishing ap, and (3) the small-size expansion for large «ap, leads (BazZant,
1995a,c) to the following approximated universal size effect law (Fig. 2b)
valid for failures at both large cracks and crack initiation from a smooth
surface:

S O R S 1 A

in which o9, Dy, Dy and &y are constants expressed in terms of g(ap) and
its first and second derivatives and of EGy, and n and « are additional
empirical constants.

4. Summary and Conclusion

In quasibrittle structures, the size effect can be generally characterized
on the basis of asymptotic series expansions and asymptotic matching.
Whereas for normal sizes the scaling problem is extremely difficult, it be-
comes much simpler both for very large sizes (LEFM) and for very small
sizes (plasticity). Asymptotic matching is an effective way to obtain a sim-
plified description of the size effect in the normal, intermediate range of
sizes. The size effect at crack initiation from a smooth surface can also be
described the basis of the asymptotic energy release analysis, and a uni-
versal size effect law comprising both types of size effect can be formulated
The fractal morphology of crack surfaces in quasibrittle materials does not
appear to play a significant role in fracture propagation and the size effect.

Appendix. Is Weibull-Type Size Effect Important for Quasib-
rittle Failure?

It is proper to explain at least briefly why strength randomness is not
considered in the present analysis of size effect. The main reason is the re-
distribution of stresses caused by stable fracture growth prior to maximum
load and localization of damage into a fracture process zone. If the Weibull
probability integral is applied to the redistributed stress field, which has
high stress peaks near the crack tip, the dominant contribution to the inte-
gral comes from the fracture process zone. The important point is that the
size of this zone is nearly independent of structure size D. The contribution
from the rest of the structure is nearly vanishing, which corresponds to the
fact that the fracture cannot occur outside the process zone. Because, in
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specimens of different sizes, this zone has about the same size, the Weibull-
type size effect must, therefore, disappear. In other words, the fracture is
probabilistic, but only the random properties of the material in a zone of
the same size decide the failure, even though the structures have different
sizes.

A generalized version of Weibull-type theory, in which the material fail-
ure probability depends not on the local stress but on the average strain
of a characteristic volume of the material, has been shown to yield the
approximate size effect formula (Bazant and Xi, 1991):

on=—20 (14)

B

in which m = Weibull modulus (exponent of Weibull distribution of random
strength), which is typically about 12 for concrete, and n = 1, 2 or 3 for
one-, two- and three-dimensional similarity. Typically, for n = 2 or 3,
2n/m < 1, for concrete. Then, for m — oo, which is the deterministic
limit, this formula approaches the size effect law in (6). Also, for D — 0,
this formula asymptotically approaches the classical Weibull size effect law,
and for large sizes and any m, this formula asymptotically approaches Eq.
(6). It has been shown that the difference between these two formulas for
concrete structures is significant only for extremely small sizes, which are
below the applicability of continuum modeling.

References

ACI Comm. 446 (1992). “Fracture mechanics of concrete: Concepts, mod-
els and determination of material properties,” State-of-Art Report of
Am. Concrete Institute (ACI), Fracture Mechanics of Concrete Struc-
tures, Z.P. Bazant, Ed., Elsevier, London, 1-140.

Bazant, Z.P. (1983). “Fracture in concrete and reinforced concrete”, Me-
chanics of Geomaterials: Rocks, Concretes, Soils, Pre-prints, IUTAM
Prager Symposium held at Northwestern University, eds Z.P. BaZant,
Evanston, IL, 281-317. '

Bazant, Z. P. (1984). “Size effect in blunt fracture: Concrete, rock, metal.”
J. of Engng. Mechanics, ASCE,110, 518-535. .

Bazant, Z.P. (1993). “Scaling Laws in Mechanics of Failure.” J. of Engry.
Mech., ASCE, 119, 1828-1844.

Bazant, Z.P. (1995a). “Scaling theories for quasibrittle fracture: Recent
advances and new directions.” in Fracture Mechanics of Concrete Struc-
tures (Proc., 2nd Int. Conf. on Fracture Mech. of Concrete and Concrete
Strucutres (FraMCoS-2), held at ETH, Ziirich), ed. by F.H. Wittmann,




SCALING IN NONLINEAR FRACTURE MECHANICS 11

Aedificatio Publishers, Freiburg, Germany, 515-534.

Bazant, Z.P. (1995b). “Scaling of quasibrittle fracture and the fractal ques-
tion.” ASME J. of Materials and Technology 117, 361-367 (Materials
Division Special 75t Anniversary Issue).

Bazant, Z.P. (1995c). “Scaling of quasibrittle fracture: IL. The fractal hy-
pothesis, its critique and Weibull connection.” Int. Journal of Fracture,
submitted to.

Bazant, Z.P., and Cedolin, L. (1991). Stability of Structures: Elastic, In-
elastic, Fracture and Damage Theories (textbook and reference volume),
Oxford University Press, New York.

Bazant, Z.P., Daniel, I., and Li, Z. (1995). “Size effect and fracture char-
acteristics of fiber-composite laminates”, Report, Dept. of Civil Engng.,
Northwestern University, Evanston, Illinois; also ASME JEMT, in press.

Bazant, Z.P., and Kazemi, M. T. (1990). “Size effect in fracture of ceram-
ics and its use to determine fracture energy and effective process zone
length.” J. of American Ceramic Society 73, 1841-1853.

Bazant, Z.P., and Kazemi, M.T. (1991). “Size effect on diagonal shear
failure of beams without stirrups.” ACI Structural J. 88, 268-276.

Bazant, Z.P., and Li, Z. (1995). “Modulus of rupture: size effect due to
fracture initiation in boundary layer.” J. of Struct. Engrg. ASCE, 121,
739-746.

Bazant, Z.P., Lin, F.-B., and Lippmann, H. (1993). “Fracture energy re-
lease and size effect in borehole breakout. Int. Journal for Numerical
and Analytical Methods in Geomechanics, 17, 1-14.

Basant, Z.P., Ozbolt, J., and Eligehausen, R. (1994). “Fracture size effect:
review of evidence for concrete structures.” J. of Struct. Engrg., ASCE,
120, 2377-2398.

Bazant, Z. P., and Pfeiffer, P. A. (1987). “Determination of fracture energy
from size effect and brittleness number.” ACI Materials Jour., 84, 463
480.

Bazant, Z.P., and Xi, Y. (1991). “Statistical size effect in quasi-brittle
structures: II. Nonlocal theory.” ASCE J. of Engineering Mechanics,
117, 2623-2640.

Bender, M.C., and Orszag, S.A. (1978). Advanced mathematical methods
for scientists and engineers. McGraw Hill, New York (chapters 9-11).
Borodich, F. (1992). “Fracture energy of fractal crack, propagation in con-

crete and rock” (in Russian). Doklady Akademii Nauk 325, 1138-1141.

Carpinteri, A. (1986) Mechanical Damage and Crack Growth in Concrete.
Martinus Nijhoff Publishers, Doordrecht.

Carpinteri, A., Chiaia, B., and Ferro, G. (1993). “Multifractal scaling law
for the nominal strength variation of concrete structures”, in Size effect
in concrete structures (Proc., Japan Concrete Institute Intern. Work-



12 Z.P. BAZANT

shop held in Sendai, Japan, Nov. 1995), eds M. Mihashi, H. Okamura
and Z.P. Bazant, E. & F.N. Spon, London-New York, 193-206.

Carpinteri, A. (1994). “Fractal nature of material microstructure and size
effects on apparent mechanical properties.” Mechanics of Materials 18,
89-101.

Cahn, R. (1989). “Fractal dimension and fracture.” Nature 338, 201-202.

Gettu, R., Bazant, and Karr, M. E. (1990). “Fracture properties and brit-
tleness of high-strength concrete”, ACI Materials Journal 87, 608-618.

Jirdsek, M., and Bazant (1995). “Macroscopic fracture characteristics of
random particle systems.” Intern. J. of Fracture, 69, 201-228.

Lange, D.A., Jennings, H.M., and Shah, S.P. (1993). “Relationship between
fracture surface roughness and fracture behavior of cement paste and
mortar.” J. of Am. Ceramic Soc. 76, 589-597.

Mandelbrot, B.B., Passoja, D.E., and Paullay, A. (1984). “Fractal character
of fracture surfaces of metals.” Nature 308, 721-722.

Mecholsky, J.J., and Mackin, T.J. (1988). “Fractal analysis of fracture in
ocala chert.” J. Mat. Sci. Letters 7, 1145-1147.

Mosolov, A.B., and Borodich, F.M. (1992). “Fractal fracture of brittle
bodies under compression” (in Russian). Doklady Akademii Nauk 324,
546-549.

Planas, J., and Elices, M. (1988a). “Size effect in concrete structures:
mathematical approximations and experimental validation.” Cracking
and Damage, Strain Localization and Size Effect, Proc. of France-U.S.
Workshop, Cachan, France, eds J. Mazars and Z.P. Bazant, pp. 462-476.

Planas, J., and Elices, M. (1988b). “Conceptual and experimental prob-
lems in the determination of the fracture energy of concrete.” Proc., Int.
Workshop on Fracture Toughness and Fracture Energy, Test Methods for
Concrete and Rock, Tohoku Univ., Sendai, Japan, pp. 203-212.

Planas, J., and Elices, M. (1989), “Size effct in concrete structures: math-
ematical approximations and experimental validation”, in Cracking and
Damage, ed. by J. Mazars and Z.P. Bazant, Elsevier, London, 462-476.

Planas, J., and Elices, M. (1993). “Drying shrinkage effect on the mod-
ulus of rupture.” Creep and Shrinkage in Concrete Structures (Proc.,
ConCreep 5, Barcelona), eds Z.P. Bazant and I. Carol, E. & F.N. Spon,
London, 357-368.

Saouma, V.C., Barton, C., and Gamal-el-Din, N. (1990). “Fractal charac-
terization of concrete crack surfaces.” Engrg. Fracture Mechanics 35.
Saouma, V.C., and Barton, C.C. (1994). “Fractals, fracture and size effect

in concrete.” J. of Engrg. Mechanics ASCE 120, 835-854.
Xie, Heping (1993). Fractals in Rock Mechanics. Balkema, Rotterdam.




SCALING EFFECTS IN THE FRACTURE OF QUASI-BRITTLE
MATERIALS AND STRUCTURES

B. L. KARIHALOOf

School of Civil and Mining Engineering
The University of Sydney

NSW 2006

Australia

Abstract - Quasi-brittle materials are characterised by tension softening
behaviour after the attainment of their tensile strength. The micromechan-
ical description of this behaviour introduces an internal length scale, called
the characteristic length of the material. Structures made from quasi-brittle
materials are known to exhibit a strong size effect. Several cohesive crack
models have been proposed to explain this effect on the basis of dimensional
considerations through the so-called brittleness number.

In this paper an inverse procedure for a cohesive crack model is ex-
ploited to provide explicit definitions of characteristic length and brittleness
number from physical rather than dimensional considerations. The physical
cause for the size effect is also identified.

1. Introduction

Materials, such as concrete, rocks and some ceramics, that have tradi-
tionally being regarded as brittle do in fact exhibit a moderately strain-
hardening behaviour prior to the attainment of the ultimate tensile strength
(region AB in Fig. la), and an increase in deformation with decreasing ten-
sile carrying capacity, i.e. by tension softening (region BD in Fig. 1a).

The pre-peak strain hardening behaviour of quasi-brittle materials is
due to the formation of microcracks along the interfaces between the matrix
and other phases and of their deflection into the matrix. This behaviour
has been successfully explained using the concepts of damage mechanics
(see, e.g. Karihaloo, 1995).
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The tension softening response is due to the localization of damage in
the form of a macroflaw along the eventual failure plane whose catastrophic
advance is prevented by a bridging mechanism which breaks its continu-
ity. The micromechanical description of the tension softening behaviour
introduces an internal length scale, called the characteristic length of the

material.

o
gla
§ []
—I-w | Microcracking | Micro- |
T T bridein; Tcracking
D ‘Raction-free crack,ap ~ bridgingzone <
D
Deformation Fracture process zone, lp
(@) (b)

Figure 1. Typical tensile load-deflection response of a pre-cracked quasi-brittle specimen
(a), and the fracture process zone ahead of the real traction-free crack (b).

Structures made from quasi-brittle materials are known to exhibit a
strong size effect whereby small structures appear to fail in a ductile manner
but large structures in a brittle and often catastrophic manner. Several
cohesive crack models have been proposed to explain this ductile to brittle
transition on the basis of dimensional considerations through the so-called
brittleness number. We shall briefly review the various brittleness measures
in the next Section. We shall also describe briefly an inverse procedure for
a cohesive crack to provide explicit definitions of characteristic length and
brittleness measures from physical rather than dimensional considerations.

2. Nonlinear Fracture Theories for Quasi-Brittle Materials

The primary reason why the Griffith linear elastic fracture theory is inap-
plicable to quasi-brittle materials is the formation of an extensive fracture
process zone (FPZ) ahead of a pre-existing notch/crack. The material in
this zone progressively softens due to microcracking and other bridging
mechanisms. This is schematically illustrated in Fig. 1b on the example of
a notched specimen subjected to a tensile load.

A fracture theory capable of describing material softening will necessar-
ily be a nonlinear one, but because of the size of the FPZ, it will differ from
the nonlinear fracture theory for ductile materials. In a quasi-brittle mate-
rial the FPZ practically occupies the entire zone of nonlinear deformation

(Fig. 2)
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The first nonlinear theory of fracture for quasi-brittle materials was
proposed by Hillerborg et al. (1976). It includes the tension softening FPZ
through a ‘“fictitious’ crack ahead of a pre-existing real crack whose faces are
acted upon by certain closing stresses in the spirit of Barenblatt, Dugdale-
BCS models (Fig. 3). The term ‘fictitious’ is used to underline the fact
that this portion of the crack cannot be continuous with full separation of
faces. Unlike the Barenblatt model, the size of FPZ may not be small. In
consequence, a knowledge of the distribution of closing stresses o(w) is now
essential. Thus, the fracture of a quasi-brittle material requires at least two
material parameters. In the nonlinear theory of Hillerborg et al. (1976),
these are the shape of tension softening relation o(w) and the area under
this curve G (Fig. 3b), besides f'(2).

| e |

o
(a) Linear elastic (b) Nonlinear plastic (c) Nonlinear quasi-brittle

////

%

Figure 2. Distinguishing features of fracture in (a) a linear elastic, (b) a ductile, (c) a
quasi-brittle material. L=linear, N=nonlinear, F=FPZ (after ACI Report 446.1, 1989).

Figure 8. A real traction-free crack ao terminating in a fictitious crack with residual
stress transmission capacity o(w) whose faces close smoothly near its tip (K = 0).

Another nonlinear theory of fracture proposed by Bazant (1976) treats
the tension softening in a “smeared” manner through a strain-softening con-
stitutive relation. To relate the inelastic strain € to w and G of Hillerborg
et al. (1976), it is now necessary to introduce a gauge length over which
the microcracks in the FPZ are assumed to be distributed (Fig. 4)
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3. Size Effect and Brittleness Number

The size of FPZ is commensurate with that of a small cracked structure
made of a quasi-brittle material so that its response will be ductile. On the
other hand, the FPZ occupies but a small fraction of the structural volume
in an “infinitely” large structure, so that its response will be brittle. If we
therefore define the fracture energy, Gy and size of FPZ, c¢; with respect
to an infinitely large structure (W — 00), then in order to determine G
(akin to the modulus of cohesion in the Barenblatt cohesive model) and
cs from laboratory specimens of moderate size, Bazant (1984) proposed
the following scaling law based on dimensional considerations and smeared
crack model (Fig. 4)

1 1
(on), = [E'Gs/(d'(a0) e£)]? [L+g(a0) W/(g'(x0) )] ™2 (1)
where (on),, is the nominal stress at maximum load P,. In (1) ap = ao/W,
a prime on g'(ap) denotes differentiation with respect to ao and g(ap) is a
function of the relative notch depth ag only. It is related to the geometry
function Y () appearing in the stress intensity factor Kj.
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Figure 4. Microcracking smeared over a band of width h and the inelastic deformation.

We note in passing that the fracture energy Gr according to the fic-
titious crack model (Fig. 3b) is much larger than Gy for a moderate size
structure but as W — oo, Gr — Gj. Likewise, the characteristic length
I, according to this model (Fig. 3a) I, = (E'GF) / f;2 approaches cy, as
W — oo. The brittleness of a quasi-brittle material is quantified by lcx or
cy; the smaller the value of .4 or ¢y, the more brittle the material.

As the strength of a structure is defined by the force per unit area, i.e.
by energy per unit volume, while its toughness is energy per unit area, the
brittleness of the structure includes its size from dimensional considerations

B=I1ln/W or B =csg/W. (2)

Another measure of brittleness can also be introduced, if E' and f{ in lca
have been independently measured, namely the energy brittleness number
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(Carpinteri, 1986) s, = Gr/ (f; W). In the next Section we shall study the
physical cause of the size effect in quasi-brittle materials.

4. Physical Cause for Size Eﬂ'ect

Leicester (1969, 1973) seems to have been the first to investigate the effect of
size on the strength of structures made out of metals, timber and concrete.
He identified two fundamental causes of size effect in real structures as
(i) the material heterogeneity, and (ii) the occurrence of notches or other
discontinuities to the flow of stress. The size effect due to heterogeneity
in material strength is explained by Weibull statistics but the size effect
caused by the occurrence of notches, etc needs some explanation. Leicester
argued that, as the LEFM predicts the occurrence of infinite stresses at the
apex of notch root, the failure criterion for real materials must be stated
in terms of the elastic stresses on some region Rq encircling the notch root.
Then provided (i) the structural member is sufficiently large so that at
failure Rg is contained with the range of applicability of asymptotic stress
field at notch root, and (ii) the details of the notch root are always the
same (i.e. geometric similarity of structures), the failure stress is given by
(oN)u = AJ/W?.

The above two assumptions are in complete accord with the two hy-
potheses on which the size effect rule (1) is based. In fact, Ry can be
identified with cs. For structures of moderate size, the requirement that
Ry << W cannot be met. In consequence, it is insufficient to consider just
the singular term in the asymptotic stress field in mode I, because now the
terms that were unimportant due to the smaliness of Ry can no longer be
ignored.

To understand the role played by the non-singular terms in the asymp-
totic solution, let us consider the configuration of the Griffith problem (a
plane containing a crack 2a) and write

oyl = 0o(r) = Ky (14 1r/8)/V2rr (3)
where 6 = 4a/3.

We shall consider the fictitious crack of Fig. 3 to investigate the effect of
the second term in (3) on the result. We shall now investigate how o and w
vary individually in the FPZ. If we know these variations, then elimination
of the distance from them will give us the relation o(w). For this, we will
decompose the problem into two sub-problems and use superposition. The
first sub-problem is the elastic one with the FPZ. The stress intensity factor
at the tip of the traction free crack O is equal to Ky and the stress distri-
bution ahead of O is given by (3). In the second sub-problem, the stress
and opening displacement are [o(s) — oo(l, — s)] and w(s), respectively. The
stress intensity factor k(s) at the crack tip and the opening displacement
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g(s,t) at the location ¢ due to unit normal forces at s are known from
handbooks

k(s) = —\/2/(rs),  a(s,1) = (4/( ') log | (v = VB)/ (/5 +VD)|. (@)

k(s) and g(s,t) are the usual influence or Green’s functions. The corre-
sponding Green’s functions for a finite crack depend on the crack length.
Superposition and smooth crack closure condition give

/ 9(s,)[0(5) —00(ly—5)lds = w / k(s)[o(s)—0o(l,—5)]ds = 0. (5)

Substituting (3) and (4) into (5) and evaluating some elementary inte-

grals, we get
o(s)ds + ?Ef{% (1+ L - i) =w(t) (6)

) [Ge o

These integral equations have to be solved numerically for a given value
of K1 to obtain o(s) and [,. Alternatively, /, can be prescribed, and the
equations solved for o(s) and K. Of course, in both cases it is necessary
to know the tension softening relation o (w). Horii et al. (1987) have solved
(6) and (7) numerically for a linear approximation to o(w). However, here
we shall demonstrate an inverse procedure which allows us to solve these
equations analytically.

In this procedure, we approximate w(s), instead of o(w), in such a way
as to solve (6) and (7) analytically for o(s) and I, (for prescribed Kj).
We then eliminate s between the assumed w(s) and the calculated o(s) to
establish o(w); hence the inverse nature of the procedure, first proposed by
Smith (1974) (see also Smith, 1994).

Let

WE'/ \/_—i-\/_

w(s) = ap svtE (8)

where n is positive integer or zero (n > 0) and a, a constant to be deter-
mined. s varies between 0 and I,, so that (8) identically meets the require-
ment that w(0) = 0 at the fictitious crack tip. Also dw/ds = 0 at s = 0,
thereby satisfying the smooth closure condition.

Substitution of (8) into eqns (6) and (7) gives, after simplification,

B Hot 3 _ B wlnts) 9)
2\/‘ T'(n+2) 2210, I(n+2)

o(y) _T(n+1) Jn(y) LT+ I (n+ 1)
)2 f_{ff fm}{l“mﬂ)}(“)

Ki=

fi Tn -I-




SCALING EFFECTS IN QUASI-BRITTLE MATERIALS 19

where y = s/l,. From (8), we also have w(y)/w. = y™t3/2. Elimination of
y between this and (10) gives the stress displacement relation o(w) in the
FPZ corresponding to the assumed w(s) (8). The length of FPZ, I, can also
be calculated, and is

,:[ 4/ fi r(n+1)_g<n+%)]‘1
P lEw.(n+3)Tn+L) d(n+1)] °

(11)

The simplest example is one in which only one term (n = 0) is retained
in (8). In this case, the stress-displacement law in the FPZ is

o/fi =1 (w/u)]". (12

It is not always possible to eliminate y. This would be the case if we
chose three terms (n = 0,1,2) in (8). It would then be necessary to perform
the elimination numerically. When the numerical results have been fitted
by polynomial approximation, the following relation results (y = w/w,)

% =1-9.24317% 4 33.825973 — 59.4248v* + 49.30007° — 15.47227%. (13)
i

Irrespective of the number of terms chosen in (8), (9) and (11) give
b =loo(1= N7 Kr=Kieo(l-M)/? (14)
where A = [,00/6, and

lpoo = A1 E'w./f], Kreo=1/A2 E'w, fl. (15)

lpeo is the length of FPZ when § = oo or A = 0, i.e. when the second term
in (3) is ignored. The constants A; and A; depend on the shape of the
o(w) curve. For (12), A; = 3/8, A, = 37/16, and for (13), 4; = 28/39,
A = 0.4969.

We can also evaluate the energy expended in the FPZ, denoted Wy as
well as the specific fracture energy G

Wy = /Olp /Ow o(w)dwds, Gr= /Owc o(w) dw. (16)

The integrals in (16) can be evaluated analytically for the o(w) relation
(12), but for the relation (13), numerical integration is necessary

Wi=Asfiw?/(1-2), Gr=A4flw, (17)

where Az = (97)/256, A4 = (37)/16 for relation (12), and A = 0.0521,
A4 = 0.4969 for relation (13).

We shall now adopt an approximate procedure for finite bodies sug-
gested by Horii et al. (1987), to extend the above results. In this procedure
the variation of stress intensity factor corresponding to the stress distribu-
tion (3) is approximated by
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r

Ki(r) = — /0 k(s) oo(r — ) ds = K1 [1+ 1/ (26)]. (18)

K(r) is used to identify the parameter A for a body of finite size, say
a three-point notched bend beam or a crack line wedge loaded specimen
(CLWL) as follows. The ratio K1(r)/Kr =Y (%) /Y () is set up using
the appropriate geometry function ¥ (—177) For a three-point bend specimen
Y () is given by

Y(a):A0+A1a+A2a2+A3043+A4a4 (19)
where o = a/W, and the constants Ao, -+, A4 depend only on the span
to depth ratio S/W. For S/W = 4, Ay = 1.93, A, = -3.07, A; =
14.53, As = —25.11,and A4 = 25.80. For a CLWL the geometry function is

Y(a) = (2+0)(0.886+4.64 a—13.320*+14.72 0°~5.64 0*) (1—0)~2. (20)

Next the ratio is expanded in Taylor’s series about 33> and only the first
two terms retained
Ki(r)/Kr=1+[Y'(e)/Y ()] (r/W) (21)
where Y/(a) = dY (o) /da.
A comparison of (21) with (18) immediately gives
X = lpoo/8 = 2[Y" (@) /Y ()] (lpoo/ W) (22)

where I,o, can be chosen corresponding to the semi-infinite crack geometry
(15) provided the stress distribution (3) has been used in its calculation.
As an example, let us consider a three-point notched bend beam with

S/W = 4. We find, after simplification

YI

—Y(%)z—mg— 12,530 +7.1302 + 72.890° —122.01a'=—1.59 - F (a)  (23)
where F(a) stands for the terms involving o. Likewise, for a CLWL speci-
men we find

!
};((Z‘)) —7.237— 56.244a+431.30% —3225.60° +233260* =7.237 - F () . (24)
From (15) and (22) we can write
1
Ki(r)/Kreo = [1 = 2{Y"(0)/Y ()} (lpoo/ W) ]® (25)

where 0, and Ko, are given by (15). Substitution of (23) or (24) into (25)
immediately gives the ratio of Kj/Kroo for structures of one and the same
geometry. Relation (25) therefore also gives the ratio of the corresponding
failure stresses

(0N (0N )aso = [1 = 245(Ipoe/ W) + 2F (@) (lpoo/ W) ] (26)
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where As = —1.59 for three-point bend beam and A; = 7.237 for CLWL.

5. Discussion and Conclusions

Let us rewrite some of the equations derived above in a form suitable for
explaining many features of the fracture of quasi-brittle structures, and not
only the size effect.

First, we eliminate w, from (15) using (17) to get

oo = (A1/As) (E'GF/£2) (27)

Next, we introduce a parameter v(a) = A4[As + F(a)] /A;. F(o) clearly
reflects the influence of the geometry and initial notch depth of the speci-
men. Substitution of (27) and y(a) into (26) gives

(ON)u/ (08 )uoo = [1+ 7(@)lch/WIE . (28)

Despite the approximations made in arriving at (28), we have revealed
that the origin of the size effect is in the non-singular stress distribution
ahead of the notch/crack, represented by & (or A). In the process, we have
also identified the physical basis of the many brittleness measures that had
their roots in dimensional analysis and geometric similitude.

As we have already identified ., with I, (27), the physical basis of
the structural brittleness measure namely l.,/W (2) becomes immediately
apparent, and by inference also that of energy brittleness number s.. The
structural brittleness number 8 of Bazant & Kazemi (1990), defined by (2)
can also be immediately identified with W/[l, ¥()] of (28).

It is a common feature of all cohesive crack models, including that of the
FCM, that Gp(= J.) is uniquely determined by the area under the tension
softening diagram. In general, G is given by (17) where only the constant
A4 depends on the shape of this diagram. Consequently, if the shape of
o(w) has been accurately determined and the uniaxial tensile strength has
been independently measured, then G is known exactly, and one can use
(17) to calculate w. = J./(A4f]).

Let us now assume that the fracture of a test specimen occurs when
K= K§, at P = Ppq.. From (14) and (15) it follows that

(K5e)? = A2 B we f (1 - A) (29)
which may be rewritten in terms of Gp(= J;) using (17)
(K$,)? = (A2/A4) E'J. (1= ). (30)

As ) is negative for the three-point notched beam geometry and positive
for CLWL geometry, and as (29) is based on an effective LEFM concept,
i.e. (K$,)? = EJ,, it would appear that the relation (30) is violated. What
we have actually proved is that if K attains the critical value K5, at the
maximum load P, then at this instant the crack opening displacement
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w must be different from its critical value w,, say equal to w*, so that the
following relation is exactly met

Ayw* fi (1= A) = Je. (31)

w* < w, for a three-point beam geometry, and w* > w, for CLWL geometry.

We have proved from physical principles what is commonly observed in

a test on three-point notched beam (or CLWL) specimen, namely that the
peak load is attained before (or after) the stress-free crack begins to grow.
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1. Introduction

The stress field close to a crack tip in an elastic isotropic solid can be
expressed as an asymptotic expansion following Williams (1957):

oij(r,0) = Aij(a)T_% + B;;(0) + Cij(e)r% 4. (1)

(r,0) are polar co-ordinates centred at the crack tip, and o;; are the carte-
sian components of the stress tensor. Focussing interest on the non-zero
terms at the crack tip, the elastic field can be expressed in the form:

K
oij(r,0) = ﬁ—%fﬁw) + Té1,56i1 (2)

The first term embodies the stress intensity factor K, while the second
term, denoted 7', is a uniform stress o173 = T, acting parallel to the crack
flanks. The non-singular T-stress has now been tabulated for a wide range

of geometries, in which the results are either expressed in terms of a stress
concentration factor %— or as a biaxiality parameter §:

p=Tvre )

Results for some important crack geometries have been reviewed by Karstensen
and Hancock (1994) and Sherry et al. (1994).
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The role ot the non-singular T-stress on the development of elastic-
plastic crack tip fields has been discussed by Larsson and Carlsson (1973),
Harlin and Willis (1988, 1990) and Bilby et al. (1986). Betegén and Han-
cock, (1991) demonstrated that all geometries which initially develop con-
strained flow fields feature positive values of T, while geometries which
exhibit unconstrained flow field feature negative values of T'. In bending,
single edge cracked bars with a/W> 0.3 exhibit positive values of T and
develop fully constrained fields.

Shallow cracked bars develop a negative T stress and lose crack tip con-
straint. To predict the level of crack tip constraint in fully plastic specimens
Betegén and Hancock, (1991) suggested that the full field solutions could
be related to the modified boundary layer formulation at the same value of
T. Modified boundary layer formulations are formal representation of con-
tained yielding in which the plastic zone is contained within an outer elastic
field defined by K and T'. In both contained yielding and full plasticity, con-
straint loss arises from a largely hydrostatic term which is independent of
the distance ™3 from the crack tip. This results in parallel stress profile at
low levels of deformation when the loss of constraint only arises from T'.
O’Dowd and Shih (1991a,b) generalised these results by wrltmg the stress
field the form:

%i = ("—J"—) = 6:j(8,n) +@Q <(r00)q0m(0 ")) (4)

(o/] Ol€00'0]n7‘

The first term in (4) is the HRR field. The amplitude of the second term
is denoted ). The angular functions &;; and the integration constants I,
have been tabulated by Shih (1983). @ controls the level of constraint in the
stress field. It is argued that the exponent ¢ can be approximated to zero,
leading to a distance independent second order term. Numerical solutions
using modified boundary layer formulations however suggest that the fields
are better expressed in terms of the small scale yielding (T'=0) field:

05 = USSY anélj (5)

The small scale yielding (7=0) field comprises the HRR field plus some mi-
nor but not insignificant higher order terms. Although modified boundary
layer formulations are formal representations of contained yielding, Betegén
and Hancock (1991) and Al-Ani and Hancock (1991) attempted to corre-
late modified boundary layer formulations with full field solutions of a wide
range of geometries into full plasticity. In order to correlate fully plastic
solutions with small scale yielding solutions using modified boundary con-
ditions, T was calculated in the same manner from the applied load or
equivalently from the elastic component of J, in both cases. Although T
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can simply be determined from remote loading parameters, Q can currently
only be determined by detailed local finite element analysis. The present
work is motivated towards developing schemes to estimate () from remote
loading parameters, and present some results from a more comprehensive
study by Karstensen, Nekkal and Hancock (1995).

2. Numerical Solutions

2.1. MATERIAL RESPONSE

Finite element solutions were obtained within the framework of small strain
deformation as described by Hibbitt, Karlsson and Sorenson (1992). The
material response was linear elastic at stress level less than the yield stress,
0o. In uniaxial tension the material response can be described by Hooke’s
law:

o= Ee (0 < 00) (6)

where E is Young’s modulus. Poisson’s ratio, v, was set to 0.3. Yield
and associated plastic flow was modelled by incremental plasticity under
the Prandtl-Reuss flow rules. The plastic response was approximated to
a Ramberg-Osgood stress-strain relation which in uniaxial tension can be
described by:

€ o o\

— = — 4 a(= 7

S =Z o) @
Karstensen, Nekkal and Hancock (1995) have preformed numerical calcula-
tions with a wide range of hardening rates, under both bending and tensile
loading. In the present work data for n=13, £4=0.001 and o = % are pre-
sented.

2.2. FULL FIELD SOLUTIONS

Numerical solutions have been obtained for a range of plane strain edge
cracked bend bars shown schematically in figure 1. Symmetry allowed half
the bar to be modelled. The crack length to width ratios which have been
examined are yy=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,0.8 and 0.9. The height 2H
of the bars was 6 times the width.

3. Constraint Estimation

In order to illustrate the nature of the crack tip fields, numerical results
for a shallow edge cracked bar (a/W=0.1, n=13) are shown in figure 2.
The hoop stress directly ahead of the crack is given as a function of %52 for
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Figure 1. Geometry of the edge cracked bend bars.

increasing levels of deformation. The stress profiles are compared with the
small scale yielding field which applies at very small levels of deformation
when plasticity is a small perturbation of the elastic field. Initially the crack
tip field can be expressed as the small scale yielding field plus a distance
independent term. This can be seen at deformation levels of *3 = 417 and
53 when the difference between the small scale yielding field and the full
field solution is independent of distance beyond ™* = 10. At higher levels of
deformation 25 = 1.8 the difference between the full field solution and the
small scale yielding field becomes distance dependent as the global bending
field is encountered. This effect arises because the bar is subjected to a
bending moment and the ligament remote from the tip is in compression.

In order to examine the nature of the constraint loss, ¢ has been de-
composed into two terms :

Q=Qr+Qp (8)

Q7 is determined from the modified boundary layer formulation as a func-
tion of T and is independent of the distance 252 but dependent on the strain
hardening rate. The residual term @ p can be regarded as the difference be-
tween the total loss of constraint given by ¢ and the loss of constraint given
by a negative T.

4. Qp Estimation for Single Edge Cracked Bars in Bending

The nature of the residual constraint term Qp is now investigated. The
distance dependency of @ p is shown in figure 3, by plotting Q) p as a function
of level of deformation expressed in terms of the applied load, P normalised
by the limit load Primt, at distances “32=1,2 and 5 from the crack tip. The
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Figure 2. The hoop stress directly ahead of a crack SECB, a/W=0.1, n=13 at several
levels of deformation

limit loads were determined numerically from the non-hardening analysis,
but agree closely with the expression given by Miller (1987).

It is significant that the data for all geometries fall on the same curve,
whose shape only depends on the strain hardening rate and the distance 32
from the crack tip. Karstensen, Nekkal and Hancock (1995) have described
the form of this relation by:

Qp = ka(n) (?) < r >n+1 (9)

Primit

k2(n)is a tabulated proportionality constant, dependent on the strain hard-
ening rate, but independent of geometry (a/W ratio or the ligament size
¢). This function is shown plotted for n=13 at a distance ™32 = 2 in figure
4.

The relation between the plastic component of J and the load can be
expressed in the form:

Jp = aaogOChl(%,n)(PLfmit )n‘"1 (10)
hi(a/W,n) is a function of the - ratio and the strain hardening, tabulated
by Kumar, German and Shih (1980). Equations (9) and (10) suggest that
Qp is linearly dependent on Jp. Figure 5 thus shows @ p as a function of
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Figure 3. Qp as a function of PLf’m” for Single edge bend bars at distances 752=1, 2
and 5 from the crack tip.
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of edge cracked bars (a/W=0.1 to 0.9).

Qpyemy) = a(m) (22) (22) = () ) (2) (1)

It can be seen that ki(n) is insensitive to the geometry (a/W), as all the

SECB n=13|
o
J n
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n
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L R N
J
_2'm & k3
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Figure 5. Qp as a function of -330- for siﬁ)gle edge cracked bars for all /W at distances
£22=1,2,5 from the crack tip.

curves fall on the same straight line. At moderate distances from the tip
Q) p is linearly dependent on distance and may be thought of as a constraint
gradient. Using the notation of Shih and O’Dowd (1992)

Jp

,_ 0Q _0Qp _ P oy, JP
Q = 9% - 9% - k2(n)(PL. 't) = kl(cao) (12)

Tme

Complete expressions for the stress field may now be assembled from equa-
tion (9). Firstly the results are assembled in a form which enables the stress
field to be determined from the applied load.

00 _ 95Y | oLy 4 ka(m) (T"‘)) ( r )nH (13)

b
0o oo oo J Primit

=5 (o) 0 () ()
Q(%Q)_f(-d_o E’ﬂa’n)+k2 J /] \PLimit (14)
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Secondly the results are expressed in a form which enables the stress field
to be determined from the elastic and plastic components of J.

069 _ OSSY B | JE (j‘@) (JP>
60 00 +f (00 E’wa’n) + ka(n) J cop (15)

=t (SfF5) o (3) () o

Values of the constants k; and k, have been tabulated for both bending
and tension for a range of strain hardening rates in Karstensen, Nekkal and
Hancock (1995).

5. Discussion

The difference between the contained yielding prediction of ¢ based on T'
and the crack tip field in full field solutions has been denoted () p through
equation (8). The existence of a valid @ field beyond the predictions based
on T requires the existence of a distance independent Q) p term. Figures 3
and 5 all clearly show that at levels of deformation at which significant de-
viations occur from the modified boundary layer formulation, @ p increases
with distance from the tip. For force loaded edge cracked bars, the distance
independent @ term is accounted for by T, and that the deviation from
J-T characterisation at finite distances from the tip arises from the global
bending field. This difference cannot be described by a valid distance in-
dependent term, and it is therefore necessary to conclude that ¢} does not
significantly extend the two parameter characterisation of force loaded edge
cracked bars in tension and bending beyond the limits of J-T' characterisa-
tion. It is also interesting to note that the form of the expressions suggests
that at the crack tip the global bending term disappears leaving ¢ only
dependent on 7.

In order to ensure a valid @ field, it is impractical to require that Q' is
zero, and it is appropriate to allow a finite but restricted constraint gradient,
Q'. In this context equation (13) provides a convenient way of determining
Q(%o_) from the applied load in a form which parallels the J estimation

schemes advanced by Kumar, German and Shih (1980). In deeply cracked
bend bars the fully plastic field initially develops high constraint, and is
well described by J through the HRR field, within the limitations of J
dominance. Further deformation leads to a loss of crack tip constraint and
a loss of J-dominance which has been clearly identified to arise from the
global bending field.
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Deviations from the fully constrained field of deeply cracked bars arises
only from the distance dependent term Qp. A knowledge of J and k, thus
characterises the crack tip field. This provides a two parameter characteri-
sation of deeply cracked geometries in which loss of constraint arises from
the global bending field, and extends crack tip characterisation beyond the
limits of J-dominance.

6. Conclusions

The development of crack tip constraint has been systematically exam-
ined for edge cracked bars subject to bending. The initial loss of crack tip
constraint is controlled by the sign of the non-singular T stress which is
associated with fields which can be described by the small scale yielding
field plus a distance independent term (Q). Within contained yielding crack
tip characterisation can rigorously be achieved by T or equivalently Q. J-T
characterisation does however extend in practice well beyond the formal
limits of contained yielding if a notional value of T is calculated from the
elastic component of J.

At high levels of deformation both J-T and J-@ characterisation break
down simultaneously due to the global bending field impinging on the crack
tip. This results in a distance dependent term. In this context @ has been
decomposed into a distance independent term @7 which is formally related
to T’ and a distance dependent term which is related to the global bending
field. This has been expressed in terms of far field parameters such as the
applied load and J. This constitutes a two parameter characterisation, and
associated fracture criterion for deeply cracked bend bars, beyond the limits
of J-dominance.

Shallow cracked bars show a very limited region of single parameter
characterisation, as constraint loss originates from the compressive T stress
associated with the elastic field. Characterisation can be extended by the
use of a two parameter approach using J and T ( or equivalently J-Q).
These fields eventually break down simultaneously due to the global bend-
ing field impinging on the crack tip. At these deformation levels character-
isation has been achieved by the use of three parameters, J, Q7 and Q’
or (Jp, this provides a complete crack tip constraint estimation scheme for
edge cracked bars in bending.
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1. Introduction

The fracture mechanics of homogeneous materials is now well understood at
temperatures below the creep range in terms of the stress intensity factor K and
the J-integral. Practical structural integrity assessments of structures containing
defects may then be carried out using the R6 procedure [1] and are equivalent to a
J analysis of the structure. At high temperatures, the creep equivalent of J, the so-
called C* integral [2], describes the stress and strain-rate fields close to the crack
tip in widespread creep conditions and hence governs crack growth. For
assessments of defective structures, estimates of C* may be combined with crack
growth rate data 4(C*) from simple specimen tests to estimate creep crack growth
using the RS procedure [3].

The theoretical basis of fracture mechanics at interfaces between dissimilar
materials has been studied in linear elasticity and in power-law plasticity [4,5].
The crack-tip stress and strain fields are more complex than in the homogeneous
case and are characterised by two parameters. J is nevertheless well-defined for
cracks lying in the interface and is given by the same integral expression as in the
homogeneous case. The analogy between power-law plasticity described by

g, =Ac" ¢))
where ¢, is plastic strain, o is stress and n,A are constants, and power-law creep
given by
E.=Ac" @)

where €, is creep strain, then enables C* to be defined for interfacial cracks in
dissimilar materials by replacing strains and displacements in the expression
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for J by their respective rates.

This paper describes detailed finite element analyses on a bi-material single
edge notch tension (SENT) specimen under power-law plasticity. The strain
hardening coefficient n in eqn.(1) is assumed the same in both materials. The
effects on the J-integral of differences in the plastic strain coefficients A between
the two materials is studied.

Oco
2. Geometry, Loading and Materials Properties
The single edge notched tension (SENT) specimen
is shown in Fig.1. Unit thickness T=1 and plane v
strain constraint are assumed. Loading is by a
uniformly distributed end load P=Two. A crack MATERIAL T
of length a lies on the interface between Materials BOND PL
1 (y>0) and 2 (y<0). The ratio a/w of crack length L’_
to specimen width is taken to be 0.25. Similarly, -——_g____,___»:7
the ratio L/w, where 2L is the specimen length, is 2 *
equal to 2.5, which is sufficiently large to make
end effects on crack tip field quantities negligible.
The results for these values of a/w and L/w are MATERIAL 2
representative of other a/w and L/w ratios.

Stress, o, and total (elastic plus plastic) strain "
are given in each material by the linear elastic, “
power law hardening response: 7

i = ..o-_ (o) <GO

€o Co Figure 1. The single edge notch
(3) tension (SENT) specimen under
uniform remote loading
£ _%99% .,y 6 >0
€o Oo Co

where n, €, and G, are constants for each material with g,=0,/E, E being

Young's modulus. The hardening coefficient, n, Poisson's ratio, v, and E are the
same for both materials. Then the material mismatch is quantified by the ratio

B=0,/0, of the normalising stress o, Where Oj; (i=1,2) corresponds to
Material i. Hence 64,/0,=1 in the homogeneous case whereas G,/Go, tends to
infinity in the limit of a plastically deforming to rigid material cornbination.
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Figure 2. A representative finite element mesh (a/w = 0.25, L/w = 2.5) for the
bimaterial specimen showing remote and near tip mesh.

3. Finite Element Mesh Details

The finite element analyses use FEAP, a general purpose finite element code
developed at Brown University, USA. The J-integral is computed within the code
using a domain integral method. Four-node quadrilateral isoparametric finite
elements are used except at the crack tip where collapsed quadrilateral elements
are used. A typical mesh (Fig.2) uses about 3200 nodes and 3000 elements, with
36 elements in the circumferential direction around the crack tip and a crack tip
element radial dimension of 0.001a. The precise number and distribution of

elements varies as a/w and L/w vary, to give accurate results.
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Figure 3. Variation of the normalised finite element bimaterial load-point
displacement (A) and J values with normalised load.

4. Results

J-integral values have been computed for n=4 and 10 and a range of stress ratios
B defined by
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B = on/ocn @

Figure 3 shows the normalised load-point displacement and normalised J plotted
against normalised load for different mismatch ratios B with n=4. The result for a
homogeneous material is indicated by the solid line and for the same material
bonded to a rigid substratum by the dashed line.
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Figure 4. Variation of ratio of bimaterial to homogenous J values with load.

It can be seen that, for the rigid case, the slope of the curve is the same as for the
homogeneous material in the fully-plastic region (the slope is given by n for the
displacement-load curve and by n+1 for the J-load curve). At low loads, the J
values for the bi-material cases correspond to the homogeneous value as the
elastic properties of the two materials are identical. As the load increases and the
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upper material deforms more than the lower one, the response tends to a value
intermediate between the homogeneous and rigid responses. Eventually all the bi-
material cases appear to reach a steady state with the slope given by n for the
displacement-load curve and by n+1 for the J-load curve.

1.0
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M I
0.7 F

06 |-

0.5 f

0.4: . . PN USRI SPS |
1.0 3.0 50 7.0 90

Figure 5. Finite element bimaterial results , variation of M (defined in text)
against normalised load for n=4 and n=10.

In Fig.4a, the bi-material J values from Fig.3b are plotted normalised by the
value of the homogeneous J at the same load level. As would be expected from
the results shown in Fig.3b the ratio between J for the bi-material and the

homogeneous J tends to a constant at high load. Apart from the rigid case, B>,
the ratio is equal to unity in the elastic regime and there is a transition to fully-
plastic behaviour as P/P( increases. For the rigid case, the ratio remains close to
0.5 in the elastic and fully-plastic regimes. In Fig.4b the ratio is plotted for an
n=10 material. In this case the transition to bi-material behaviour occurs sooner
for the same B value. This is because, for the same B value, the bi-material effect
is stronger for the larger n. Again for the rigid case the ratio remains close to 0.5.
In the fully-plastic limit, the ratio is approximately 0.48 for n=10 and 0.50 for
n=4.

In Fig5, the limiting ratio at high loads between the bi-material and
homogeneous J, designated M, is plotted as a function of B for a/w=0.25. Our

calculations suggest that for a/w>0.2 this may be considered to be a geometry-

independent quantity.
inally, in Fig.6 the J values obtained from the finite-element analyses are

compared with those obtained using the 1, approach and also a modified EPRI-
GE J-estimation approach. These methods are first briefly described.
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The EPRI-GE method [6,7] is based on solutions for pure power-law plasticity.
In uniaxial tension, the homogeneous pure power-law material deforms
according to

€ C .
—=0(—) &)
€o Co

where o is a constant. For this material, J can be represented in terms of a
dimensionless function hj(a/w,n) by

T =0 Goeo(W-2) 2y ()" ®
w P
where Py is the plane strain limit load. The limit load used in this report, which is
different from that used in [6,7), is due to Miller [8] and is believed to represent
limit behaviour more accurately than the expression in [6,7]. The limit load is
given by

Po =~J2—§wToof(a/ w) Q)
with
fa/ w)=1-a/ w-1.232(a/ w)* +(a/ w)* ®)

for a/w<0.545. The hj function to be used in eqn.(6) is the value in [6] adjusted to
account for the different limit load value.

Equation (6) applies in the fully-plastic regime where the plastic strains
dominate. However, in order to compare J estimates over the full range of loading
it is necessary to include the elastic contribution to J. This is given by

2(1-y?
I.= _IS_(E_V_l ©)
under plane strain conditions. The total J is then given by
I=1.+7, (10)

with Jy given by eqn.(6). At higher loads the plastic strains dominate and Jy>>Je.
The expression used here for Jg is somewhat different than that proposed in [6],
where a modified Jeo was used. However, the effect of using this modified J¢ is

rather insignificant and for simplicity is not used here.
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Figure 6. Finite element modified load point displacement and modified EPRI
values of J are plotted for various cases.

The modified EPRI scheme to account for the dissimilar materials simply uses
eqns.(6,9,10) with the h; function multiplied by the appropriate M value from
Fig.5. It can be seen from Fig.6 that the agreement between the calculated J and
the modified EPRI estimate is good over all load levels. The error is largest in the
elastic-plastic regime as the ratio of bi-material to homogeneous J (Fig.4) is not
constant here but depends on the magnitude of the load. The maximum error

here is about 15%.
Alternatively, J may be estimated using the experimental load-point

displacement method. Here, the plastic component of J, Jp, may be obtained from
n PA;
Pn+l T(w-a)

where A, is the plastic part of the load-point displacement. From [9], it may be
taken that n,=1 for a tension geometry (but see below). As before we may take

11)

=1
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the elastic part of J from eqn.(9) and the total J is given by eqn.(10).

Results are presented in Fig.6 for two B values and a/w=0.25 for both n=4 and
n=10; the same trends have been observed for all other mismatch ratios and crack

geometries examined. An important result of the numerical analysis is that the 7,
values obtained for the bi-material systems are almost identical to the values

obtained from a homogeneous analysis; that is n, does not depend on the
mismatch ratio but only on the n value of the material and the crack geometry. As

seen in Fig.6, the agreement between the computed J and J calculated from n is
good in all cases, though for n=4, B=1.5 the agreement is not as good as the other
cases in the elastic-plastic regime.

5. Conclusions

Elastic and elastic-plastic finite-element calculations have been performed for a
bi-material SENT specimen with a/w=0.25. A range of material mismatch was
considered. The ratio of the bi-material J to the homogeneous J decreases to a
constant value as the load increases, the constant being a decreasing function of

the mismatch 6,/0y;. In the limit of the plastic-rigid combination, the ratio is
approximately 0.5 when n=4 or 10.

The 7, values for the bi-material system are very close to those obtained for a
homogenous system with the same hardening exponent. Good agreement is

obtained between the numerical and estimated J using the homogeneous n,, value
and the finite element load point displacement.
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— FEM STUDIES AND THEORETICAL CONSIDERATIONS

O. KOLEDNIK

Erich-Schmid-Institut fir Festkorperphysik der
Osterreichischen Akademie der Wissenschaften,
A-8700 Leoben, Austria

AND

G. X. SHAN AND F. D. FISCHER

Institut fiir Mechanik der Montanuniversitit Leoben and
Christian-Doppler- Laboratorium fiir Mikromechnik der
Werkstoffe, A-8700 Leoben, Austria

Abstract. In this presentation the capabilities and the limitations of the
near-tip constraint parameters like the @Q-stress or the stress triaxiality
are discussed. It is shown that these parameters are useful but they are
not sufficient to explain the constraint effects observed experimentally, not
even for plane strain conditions, i.e. for side grooved specimens.

By a simple two-layer model the effects of geometry and size on the crack
growth resistance are investigated. In addition to the in-plane constraint a
reasonable indicator for the global out-of-plane constraint is proposed. The
model brings new insight into the transferability problem.

1. Introduction

How does the crack growth resistance curve of a given material change
if the geometry and/or the size of the specimen is altered? Although a
huge amount of experimental data exists on this subject, e.g. see [1], and
although some partial aspects are understood, [2], this question is, generally,
unsolved up to now. This question is very important since it touches the
fundamental problem of transferring fracture properties from specimens to
structural members of arbitrary shapes and sizes.
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One of the most promising ideas to cope with this problem is the transi-
tion from a one-parameter fracture mechanics to a two-parameter concept,
e.g. the J-Q-theory [3,4]. It is the purpose of this presentation to highlight
the capabilities but also the limitations of this concept. In the following
section the J-@Q-theory shall be outlined briefly.

2. The ()-Stress as a Measure of the Constraint

The basic requirement for the application of a one-parameter fracture me-
chanics is that one parameter, e.g. the J-integral J, characterizes the stress
and strain field around the crack tip of a loaded body. This condition is
fulfilled only for so-called “high constraint” crack geometries, e.g. for deeply
notched bend specimens under well contained yielding conditions. In gen-
eral two parameters, J and @, are needed to describe the near-tip fields.
The loading parameter J determines the deformation level and the Q-stress
quantifies the constraint, i.e. the level of the hydrostatic stress, for a sta-
tionary plane strain crack [5].

Q is defined as the hydrostatic difference stress between the actual stress
og¢ (resulting from a finite strain Finite Element analysis) and some refer-

ence stress ogg ref [3-5),

Q= J66 — 000 xef for =0, r = 2i . (1)
oo g0

In Fig. 1 (from [6]) the hoop stress is plotted versus the distance r from
the tip, both in non-dimensional form. The reference stress can be taken
either from the HRR-field (for a power-law hardening material) or from the
stress field from a small-strain FE-analysis. og denotes the yield stress and

r and @ are the polar co-ordinates originating at the crack tip.
The comparison between actual and reference stresses is made at a
certain distance ahead of the crack tip just beyond the process zone as given
in Eq. (1), and Q is claimed to remain constant throughout a region % <

r < 5% [5,6]. Therefore, Q is a measure of the local near-tip constraint.
Negative Q-stresses mean loss of constraint. For different specimen types
and geometries Q-stresses have been computed [3-6]. Large negative Q-
stresses appear, e.g., for bend type specimens with very short crack lengths
or for tension type specimens like centre cracked panels. Further it was
found that Q decreases with increasing plastic zone size. But as all these
computations were made for plane geometries under plane strain conditions
the Q-stresses quantify the local in-plane constraint.

In the literature several examples are presented where @) is used success-
fully to scale for different specimen types and geometries, e.g., the slopes
of J-Aa-curves (Aa = crack extension) for a ductile A710-steel [7] or the
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2 3

Pigure 1. Computed hoop stress ahead of a crack tip is used for calculating the Q-stress,
from [6)].

J-values at the onset of brittle fracture of a mild steel at -50°C [8,5]. This
is reasonable since with the decrease of @ the tensile mean stress within
the process zone decreases. For ductile fracture this means that processes
like void initiation and void growth are decelerated (leading to an enhanced
crack growth resistance, i.e. a larger slope of the J. -Aa-curve) and for cleav-
age fracture that the attainment of the critical cleavage stress is impeded
(leading to a higher J at the onset of catastrophic fracture).

The T-stresses, T, [9] or the stress triaxiality, h, [10,11] are used as
alternative measures of the local in-plane constraint sometimes. T is the
second (r%-)term of the Williams series expansion of the stress field for a
linear elastic body and, therefore, T is strictly applicable for small-scale
yielding conditions, only. For these conditions 7' and QQ are equivalent.
The stress triaxiality is defined as the ratio of the mean stress, o, to the
equivalent stress, oeq,

Om
h=— . 2
Ueq ( )

h is measured at a certain position ahead of the tip similar to the Q-
stress. Its main advantage is that it can be used for a growing crack, too,
contrary to @ and T which both originate from the fields of stationary
cracks.
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Are these constraint parameters sufficient to explain the geometry and
size effects observed in experiments? This question will be answered in the

following section.

3. The Limitations of the Local Constraint Parameters in Ex-
plaining Geometry Effects

Fig. 2a collects three J-Aa-curves of a SAE4340 steel (oo = 298 MPa,
ultimate tensile strength o, = 1040 MPa, Young’s modulus E = 195 GPa).
The curves are for CT-specimens with width W = 50 mm and thickness
B = 25 mm but different initial crack length to width ratios, ag/W = 0.4,
0.57 and 0.7. The dependency of the tearing modulus [12],

E dJ
Tu = o4 da )
i.e. the non-dimensional slope of the J-Aa-curve, is also plotted. It should
be emphasized that all curves are computed curves (for plane strain condi-
tions) assuming a constant critical crack tip opening displacement, COD; =
102 pm, for initiation of crack extension and a constant local crack tip open-
ing angle during growth of CTOA, = 11.5° [13]. The sizes of COD; and
CTOA, were deduced from experiments, see the following section. The
measured true stress vs. true strain curves were implemented pointwise in
the analysis. The values of J were computed from the load vs. load-line
displacement curves following the common standard procedures. Fig. 2b
presents the computed normal stresses in front of the crack tip at the mo-
ment just before initiation, J = J; = 150kJ /m?, and Fig. 2c exhibits the
local stress triaxiality at a distance of r = 0.2mm ~ 2 COD; in front of
the growing tip [14]. The stress triaxiality is equal for all crack lengths
and it remains constant during a crack extension of 6 mm. As the normal
stresses in Fig. 2b are (nearly) independent of ao/W the Q-stresses are
(nearly) constant for the three ag/W-ratios. Nevertheless, the J-Aa-curves
are different and the tearing modulus, T, decreases during crack exten-
sion in all cases. The conclusion is as follows: If the local in-plane constraint
parameters are different this will have consequences on the slopes of the J-
Aa-curves because the microscopic processes within the process zone are
influenced by the different hydrostatic tension. However, the local in-plane
constraint parameters are not sufficient for characterizing the shape of the
J-Aa-curves, not even for plane strain conditions. The reason is that the
global load vs. displacement behaviour of a specimen, and in turn the shape
of the J-Aa-curve, are affected by the plast1c1ty outside the near-tip region,
and the amount of this plasticity is not fully characterized by a near tip
constraint parameter [19].
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Figure 2. a) Computed J-integrals vs. crack extension curves for CT-specimens with
different a/W-ratios, b) normal stresses ahead of the tip just before initiation, c) stress
triaxiality measured 0.2 mm ahead of the growing crack tip. Although the ()-stresses
are equal and the stress triaxiality remains constant the J-Aa-curves are different and
changing their slopes.

From Fig. 2b it is seen that for ag/W = 0.7 thé normal stresses are a
little bit smaller than for ag/W = 0.56 and 0.4. So for the smallest ligament
length, by = W — ap = 15 mm, the Q-stress is a little bit smaller, obviously
affected by the traction free back face of the specimen. This is contrary to
the figures reported in the literature where @ should slightly increase with
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increasing ao/W . It is remarked that for this specimen the Irwin radius of
the plastic zone at initiation is r; ~ 1.5 mm and that the conditions for a

valid Jic-test are easily fulfilled:

bp = 15mm > 25—‘—]L = 3.8 mm (4)
o]

Up to now only the in-plane constraint (for plane strain conditions)
has been considered. But it is clear that the out-of-plane constraint has
also a strong influence on the crack growth resistance: The J-Aa-curve
of a thin specimen is steeper than that of a thick specimen. The out-of-
plane constraint has a two-fold effect: On the one hand it changes the local
fracture properties COD; and CTOA, along the crack front, on the other
hand it affects the global load vs. displacement behaviour, e.g., it alters the
size of the general yield load.

In the next section a simple model is presented to separate influence
factors for the geometry and size effects on crack growth resistance curves.
This model leads to a proposal for a measure of the global out-of-plane
constraint.

4. A Two-layer Model to Separate Influence Factors for Geome-
try Effects

Plain sided fracture mechanics specimens are divided into two side-surface
layers of total thickness Bj; in plane stress and a center layer of thickness
B, = B— B, in plane strain (Fig. 3). The resistance curves of the specimens
are modeled by treating fracture initiation and crack growth in the two
layers separately [15]. For each layer initiation and growth are controlled
by a local COD; and a constant local CTOA, at the moving tip. Commonly
the plane stress layer behaves tougher than the plane strain layer, i.e. the
COD; and CTOA -values are larger.

The idea of the model is that the relative thickness of the plane stress
layer, i.e. the ratio B;/B which can be easily determined (see below), pro-
vides an indicator of the global out-of-plane constraint of the specimen. The
influence of the fracture behaviour of the material can be modeled by chang-
ing the sizes of the controlling toughness parameters, COD; and CTOA..
The effect of the in-plane constraint can be tested by comparing the results
of the plane strain analyses for different geometries and by checking the
" local crack tip fields to determine the above mentioned in-plane constraint
parameters. The controlling toughness parameters, i.e. the COD; JCTOA-
pairs can be determined experimentally. E.g., for a low strength annealed
structural steel this was done by stereophotogrammetric studies of the frac-
ture surfaces near the specimen midsection (for the plane strain layer) and
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near the side surfaces (for the plane stress layer) [15]. For a SAE 4340 the
results of a multi-specimen Jic-test were used to plot the local crack ex-
tension (near the midsection and near the side surfaces) versus the load
line displacement. From these curves the COD;- and CTOA .-values can be
deduced [13].

*+~. plane stress, By

._ / CODiS, CTOACS

|

|

[

[

f

: — plane strain, B,
A | : COD;’, CTOA.®

L

[

[

B,[#

a b Bs
- |t 7— B
2

— 1

Figure 8. The two-layer model for computing resistance curves for different geometries
and sizes.

The ratio B;/B is estimated by two 2D-Finite Element analyses for
plane strain and plane stress conditions and one 3D-analysis with a rather
coarse mesh [16]. All three analyses are performed for a stationary crack.
By comparing at a given load line displacement v the “true” load, i.e. the
load of the 3D-analysis, to the loads from the plane stress and plane strain
analyses the correct thicknesses of the plane stress and the plane strain
layers can be determined (Fig. 4). B;/B decreases with increasing v but
soon it reaches a saturation value, 85 = (Bs/B)sat. The ratio B;/B or its
saturation value 3, seem to be natural indicators of the global out-of-plane
constraint.

The benefit of the two layer model is that an expensive 3D-simulation
of crack extension can be replaced by two 2D-analyses plus one (cheap)
3D-analysis for a stationary crack. For details of the computations and the
validation of the model, see [16, 17]. In some previous studies this two layer
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model was applied to investigate geometry and size effects in CT-specimens.
The main results of these studies are the following:

1. For a given material and different geometries under large-scale or gen-
eral yielding conditions Bs/B or f3s is a function of the ratio of the
specimen thickness, B, to the ligament length, b. In a similar way the
slope of the J-Aa-curve scales with the B/b-ratio if CTOA, is held
constant [17]. If B/b is small, §; is large, the out-of-plane constraint is
small and the specimen behaves like a thin specimen, i.e. % is large.

2. For a given geometry and different materials the ratio Bs/B depends
on the relative size of the plastic zone, r, /b, and the strain hardening
exponent n. The saturation value f; is only affected by n. (s increases,
i.e. the out-of-plane constraint decreases, with increasing n [17].

3. Different patterns of geometry behaviour may appear for a given mate-
rial depending on whether side-grooved or non side-grooved specimens
are used [13]. High- and low-strength materials may exhibit different
patterns of geometry behaviour [13,18,19].

4. The ratio g_g_AQ is crucial for the crack growth behaviour and it de-
termines the tendency to unstable crack extension [18,19]. (eo = go/E
is the yield strain.)
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Figure 4. The relative thickness of the plane stress layer, Bs/B, is determined from
computed load vs. displacement curves for a stationary crack. Bs/B decreases with in-
creasing loading but it reaches a saturation value, Bs, if large scale yielding conditions
are reached.
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5. Conclusions

Local in-plane constraint parameters like the Q-stress or the stress triaxial-
ity are useful tools but they represent only one influence factor on geometry
effects among others. The out-of-plane constraint is equally important.

The near tip constraint (in-plane and out-of-plane) can probably charac-
terize the sizes of the local fracture toughness properties COD; and CTOA,
as the microscopic processes of fracture occur within the process zone close
to the crack tip. On the contrary to fracture, plastic deformation is —
apart from contained yielding conditions — not concentrated only around
the crack tip. Global constraint parameters must be used to scale the global
deformation behaviour. This is the reason why the local near tip constraint
cannot quantify the widespread plasticity within a specimen. Even for plane
strain conditions the J-Aa-curves may be different for two geometries al-
though the near-tip constraint parameters are equal.

Our simple two layer model has brought new insight into the trans-
ferability problem and a proposal for a reasonable indicator of the global
out-of-plane constraint.
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MECHANISM-BASED CELL MODELS FOR FRACTURE IN
DUCTILE AND DUCTILE/BRITTLE REGIMES
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Division of Engineering
Brown University, Providence, RI 02912 USA

Abstract. The fracture resistance of ferritic steels in the ductile/brittle
transition regime is controlled by the competition between ductile tearing
and cleavage fracture. Under typical conditions, a crack initiates and grows
by ductile tearing but final failure occurs by catastrophic cleavage fracture.
The zone of tearing is modeled by a layer of void-containing cells char-
acterizing the spacing and volume fraction of voids in material elements
lying in the plane of fracture. These cell elements incorporate the soften-
ing characteristics of cavity growth and its strong dependence on stress
triaxiality. Under increasing strain, the voids grow and coalesce to form
new crack surfaces thereby advancing the crack. Crack growth causes sig-
nificant alterations in the stress field, the process zone size and directly
affects the initiation of cleavage fracture. These effects are accounted for
by incorporating weakest link statistics into the cell element model. The
cleavage fracture model also takes into account the increase of sampling
volume with crack growth and the competition between void nucleation
from carbide inclusions and unstable inclusion cracking which precipitates
catastrophic cleavage fracture. The model is not limited by the extent of
plastic deformation nor the amount of ductile tearing preceding cleavage
fracture. Load-displacement behavior, ductile tearing resistance and tran-
sition to cleavage fracture are discussed for several different test geometries
and a range of microstructural parameters. The model predicts trends in
the ductile/brittle transition region that agree with experimental data.

1. Introduction

This paper reviews some recent results on ductile tearing obtained by cell
element models. Several new results with implications on the competition
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between ductile tearing and cleavage fracture and the transition from tear-
ing to catastrophic cleavage are discussed.

Micrographs of fractured ferritic steel test specimens provide much in-
formation on ductile tearing mechanisms and characteristic length scales.
Particularly relevant are repeated observations of void growth and coales-
cence being confined to a macroscopically planar fracture process zone of
one or two void spacings in thickness; outside this region, the voids exhibit
little or no growth. Shih and Xia (1995) observed that it is advantageous to
model this fracture process region by a layer of void-containing cells repre-
sentative of the spacing and volume fraction of voids in material elements
lying in the plane of fracture as illustrated in Fig. 1. As shown in the fig-
ure, a cell element is a three-dimensional entity with characteristic length
D which contains a centered spherical void whose initial volume fraction
of the cell is fo. Salient features of a cell element are described in Section
2. Among other things, the cell element arrangement employed allows us
to circumvent computational complexities arising from crack path tortu-
osity or non-planarity on the microscale which appear to be controlled in
large part by microstructure and by micron /submicron scale deformations
leading to void nucleation (Xia and Shih, 1995a, 1995b). This is not to say
that crack advance away from the plane ahead of the initial crack should
be disregarded. Indeed, crack growth on inclined planes and the formation
of shear lips are clearly identifiable macroscopic modes of crack extension
at low levels of constraint. With some additional work, the present model
can be extended to handle these important situations. Such studies are in
progress. For the present, crack growth is confined to the plane depicted in
Fig. 1.

The aggregate of cells introduced on the fracture plane is character-
ized by several fracture process parameters, the two most important be-
ing fo and D. In the case of ferritic steel, D and fo are related to the
spacing and the initial volume fraction of voids originating from sulphide
and oxide inclusions. This cell aggregate is embedded within a convention-
al elastic-plastic continuum described by the usual material parameters:
Young’s modulus, Poisson’s ratio, yield stress and strain hardening expo-
nent. Once the fracture process parameters are calibrated using one set of
experimental crack growth data, our approach permits computation of re-
lationships among loads, displacements and crack growth, including states
where stability is lost. One of the main advantages of the present compu-
tational model is the fact that the model can be used to analyze structural
response under conditions of extensive yielding and large crack advance
without recourse to any fracture resistance curve. Indeed, Xia, Shih and
Hutchinson (1995) have successfully predicted details of the load, displace-
ment and crack growth histories of several specimen geometries which are
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Cell Element
with Void

b Layer of Void—Containing
(b) Cell Elements

Figure 1. (a) Ductile fracture by void nucleation, growth and coalescence. (b) Fracture
process region modeled by cell elements. Cell softening characteristics depend upon fo
and stress triaxiality.

known to give rise to significantly different crack tip constraints.

Cleavage fracture data in the transition region is marked by scatter.
This scatter, as well as the cleavage fracture toughness, increases with tem-
perature. Raising the temperature also increases the amount of ductile tear-
ing that precedes cleavage fracture. Some explanations for behaviors noted
above can be found from computational studies using the above cell model
in conjunction with weakest link statistics. The latter introduces an addi-
tional parameter m, characterizing the size distribution of carbide particles.
Exploratory studies to be discussed show that the augmented model pre-
dicts trends in ductile fracture resistance and ductile/brittle transition that
agree with experimental data.

2. Cell Model for Ductile Tearing

A cell is a basic (smallest) material unit that contains sufficiently complete
information on the essential characteristics of material separation. Cell el-
ements should be viewed as three-dimensional entities which are initially
cubes with dimension D related to the characteristic microstructural length
in the cavity growth/coalescence process. A similar point of view has been
advocated by Rousselier (1987), Brocks et al. (1995) and others (see Xi-
a, Shih and Hutchinson, 1995, for a more complete list of works). In our
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work, we employ Gurson’s constitutive relation as modified by Tvergaard to
describe the stress-strain behavior of a single cell element containing a cen-
tered spherical void of initial volume fraction fo (Gurson, 1977; Tvergaard,
1990). Because a cell element is a three-dimensional entity, its behavior
depends upon tractions in all three directions (normal and parallel to the
crack plane) as depicted in Fig. 1b. It is this discrete three-dimensional
nature that enables cell elements to capture the critical features of duc-
tile tearing including the strong triaxial stress effects on cavity growth and
cavity-crack tip interaction on the scale of D.

Two material state parameters — the current void volume fraction f
and the current flow stress of the matrix @ — govern a cell’s stress-strain
response. The void in a cell grows under increasing strain. A cell loses
stress carrying capacity when the hardening of the matrix is insufficient
to compensate for the reduction in the cell ligament area caused by void
growth. This loss of stress carrying capacity accelerates at some level of void
volume fraction corresponding to the final stage of the coalescence process.
Beyond this stage, the cell no longer supports any traction and the crack
advances across that cell. In our work, the final stage of material separation
is modeled by a cell traction (reduction) elongation relation which takes
effect when f equals fg. The response of a cell element prior to coalescence
is largely controlled by the initial void volume fraction fo. That is, the
volume fraction of large inclusions (sulphides and oxides) dictates the pre-
coalescence cell behavior. However, small particles (e.g. carbides) play a
critical tole in the coalescence phase by nucleating microvoids which can
greatly assist the process of cavity link-up. Indeed, under certain conditions
the coalescence phase is primarily one of microvoid cavitation, a mode of
coalescence in which relatively little energy is expended (Faleskog and Shih,
1995). For the present, the simplest way to take some account of coalescence
by microvoid cavitation is by adjusting the value of fo and the critical value
for final cell extinction, fg.

An important concept in mechanism-based fracture mechanics is the
fracture process zone (FPZ). The necessity of incorporating FPZ into duc-
tile fracture models has also been discussed by Broberg (1996) and Cotterell
and Atkins (1996). In our approach, the FPZ can be defined by the col-
lection of cells in which the strain softening due to void growth cannot be
compensated for by material strain hardening resulting in a loss of stress
carrying capacity. The primary parameters controlling fracture process zone
size are fo, matrix hardening properties and crack tip constraint. The com-
bination of high constraint and large fo results in an FPZ extending over
many cell elements. By contrast, low constraint and a small fy results in
an FPZ on the order of the void spacing; here the tearing process involves
the interaction between the tip and one or two discrete voids ahead of it.
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As already noted, the cell model can be used in the latter situation and in
the former where multiple interacting voids form the FPZ.

3. Work of Fracture

Obviously, the fracture process must obey an energy balance and under
small scale yielding conditions the balance relation is simply given by

G=T )

where G is the Griffith-Irwin energy release rate. The total work of fracture
per unit area of crack advance, I' can be partitioned into the work of the
fracture process I'g and the plastic dissipation in the background material
I'p, that is,

I'=To+Tp+Tg (2)

where T'g is the additional contribution taking into account the work related
to changes in the process zone size and the elastic energy variation within
and just outside the plastic zone due to changes in the plastic zone size.

In a ductile metal the separation process is dominated by cavity growth
and coalescence with a FPZ size on the order of 10~% m. The work required
to rupture a voided cell of unit area in the plane of the crack defines the
work of the fracture process I'g which has a weak dependence on constraint
within the range found to exist near the tip of a crack (Xia and Shih,
1995b). For the first increment of growth, it is argued that I'o > I'p + I'g
so that T at crack initiation, I'y, is nearly equal to I'p. By contrast, I'p
can be much greater than Iy when crack extension is large compared to
D, but more importantly I'p depends sensitively on crack tip constraint
(Tvergaard and Hutchinson, 1994; Shih and Xia, 1995). In the limiting
situation of steady state growth, both the process zone length and the
stress field (with respect to the advancing crack tip) are unchanging so
that only I'g and I'p contribute the total work of fracture,

I'=T¢g+Tp. (3)

Actually a small amount of elastic energy is locked in the plastic wake but
this can be added to I'p.

We can draw the conclusion that a resistance curve, I' (including steady-
state toughness), is not a property of the material. As a matter of fact, crack
geometry can exert a strong effect on I' even under small scale yielding as
has been measured experimentally by Hancock, Reuter and Parks (1993)
and computed by Tvergaard and Hutchinson (1994), Shih and Xia (1995)
and Xia and Shih (1995a). Geometry effects on crack growth resistance
curves are most readily apparent under large scale yielding. Such data in
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Figure 2. (a) Plastic flow (shown by shaded region) near stationary crack causes loss
of constraint. (b) Crack growth increases constraint (z measured from tip of advancing

crack

the form of J vs. crack advance have been reported by Joyce and Link
(1995).

4. Evolution of Crack Opening Stress

The evolution (loss) of constraint as plasticity progresses from small scale
yielding to full ligament yielding has been investigated by Betegén and
Hancock (1991) and O’Dowd and Shih (1991). Figure 2a shows the behavior
of the crack opening stress vs. distance normalized by the crack tip opening
displacement for three levels of plastic flow. The results presented here and
in the next section are obtained from plane strain analyses. This loss of
constraint (or reduction in tensile opening stress) under increasing plastic
flow has been discussed by several investigators (see O’Dowd and Shih, 1994
and references therein). The opposite trend is found for a growing crack.
Figure 2b displays the crack opening stress vs. distance (normalized by D)
measured from the tip of the advancing crack for three amounts of crack
growth. This elevation of the stress over a physically significant distance
ahead of the tip is found in typical test specimens (Xia and Shih, 1995b,
1996). A conclusive analysis showing constraint elevation under steady-
state crack growth has been carried out by Varias and Shih (1993). Their
steady-state result is generic in that it is not tied to any model of material
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Figure 3. Comparisons of the opening stress on the plane of fracture for crack advance
equal to D, 10D and 20D. (b) The relation between J and crack advance in TPB and
CCP.

separation or fracture criterion. The result is valid as long as the fracture
process zone is a small fraction of the plastic zone size and the latter is small
compared to a characteristic crack dimension. A similar result is found to
apply to rate-dependent solids (Xia and Cheng, 1996).

Figure 3a displays cell model predictions of the tensile traction across
the plane of the crack for material parameters chosen to reproduce the
behavior of A533B steel. Stress distributions are shown for crack growth
equal to D, 10D and 20D in a center-cracked panel (CCP) and three-
point-bend (TPB) specimens for three different ratios of crack length over
width, a/W. The elevation of peak stresses in all the geometries considered
can be clearly seen, particularly in the lowest constraint geometries (TPB,
a/W = 0.1 and CCP a/W = 0.6), shown by the dash-dot curve and the
dot-dot curve.

Figure 3b compares the relation between J and crack advance for the
above geometries. The J values were computed using the line-integral def-
inition on a remote contour. The strong geometry dependence of the J-
resistance curves is strikingly evident. The highest resistance curves are
found in the CCP and the shallow flaw TPB specimen, geometries with
the lowest constraint. These two resistance curves are in close agreement
and this is not unexpected in light of the similarities between the stress
distributions for the two geometries (see Fig. 3a).

Contour maps of the maximum principal stress provide the most com-
pelling description of constraint elevation with crack growth. Figure 4
displays results for the shallow flaw TPB geometry. A high stress zone,
o1/00 > 3.5, is non-existent at early growth (see contour map for Aa equal
to D). However, high stress zones extending over distances ranging from
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Figure 4. Contour maps of maximum principal stress for crack advance equal to D,
10D, 20D and 25D in shallow crack three-point-bend specimen, a/W=0.1, W=50mm,
E/0,=500, N=0.1, »=0.3; D=200gm, fo=0.005

10D to 15D can be found at later stages of growth, Aa > 10D (see con-
tour maps for Aa = 20 and 25D). It is important to note that both the
peak stress and the spatial extent of high stress increase with crack growth.
Constraint evolution in the CCP and the other two TPB geometries display
similar trends as can be anticipated from the stress results in Fig. 3a.

5. Statistical Model for Cleavage Fracture in the Ductile/Brittle
Regime

Treatment of the initiation of unstable cleavage fracture by way of ex-
treme value statistics has been discussed by several investigators including
Beremin (1983), Mudry (1987), Wang (1991), Wallin (1993) (also see the
references therein). In these studies a weakest link mechanism is assumed
for cleavage fracture. That is to say, at some point during the loading a
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Figure 5. Distribution of carbide inclusions which are potential cleavage fracture trigger
sites.

microcrack nucleates at a critical second phase inclusion and this event is
sufficient to precipitate catastrophic cleavage fracture. This approach has
been extended by Koers et al. (1995) and Xia and Shih (1996) to take full
account of the ductile crack growth prior to cleavage fracture. Two effects
are associated with ductile crack growth: the cumulative sampling volume
is increased and the crack tip constraint is increased (see Figs. 3 and 4).
This has serious implications. It suggests a significant increase in cleavage
fracture probability which is taken up next.

Figure 5 illustrates the idea upon which our model is based. Under high
constraint (and high yield stress), many carbide inclusions are potential
trigger sites for cleavage fracture. Therefore the conditions for cleavage
fracture can be met before any significant amount of ductile tearing occurs.
By contrast, under low constraint the eligible cleavage fracture trigger sites
are limited to large carbide inclusions which are few in number. Therefore
the crack has to grow by some amount in order that the advancing stress
field could sample an eligible cleavage crack nucleus. Consequently cleavage
fracture in a low constraint geometry is typically preceded by some amount
of ductile tearing.

The alteration of constraint and the increase of sampling volume with
crack growth are fully incorporated into a weakest link cleavage model em-
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Carbides Vi Large Inclusions

Figure 6. A statistical model for cleavage fracture in the ductile/brittle transition
region. On the average each cell V; contains one large (sulphide/oxide) inclusion and
many carbides particles (Xia and Shih, 1995c).

ployed by Xia and Shih (1996). Figure 6 depicts the essential features of
their model. This model also accounts for the competition between the nu-
cleation of voids from carbide inclusions and the unstable cracking of such
inclusions precipitating catastrophic cleavage fracture. A natural outcome
of the model is the Weibull stress, o, based on the sum of products involv-
ing cell volumes V; and stresses averaged over these cells. The expression
for the Weibull stress and its derivation is given in Xia and Shih (1996).
Once ow is known, the cleavage fracture probability is computed using

Py =1—exp [— (?)ms] | (4)

u

where o, is a scaling stress and m; characterizes the size distribution of
cleavage fracture triggering inclusions as was already noted.

Figure 7a displays the evolution of 6w (= ow/oy) vs. J—integral for
the crack geometries considered in Fig. 3. It can be seen that at the same
level of applied J the cleavage fracture probability is lowest for the shallow
TPB geometry and the CCP. These results can be used in the following
way. Suppose cleavage fracture in a TPB specimen, a/W = 0.6 and W = 50
mm, occurs at Jo = 200 kJ /m?. We wish to determine Jc for the other test
specimens. Direct your attention to the solid curve in Fig. 7; for J = 200
kJ/m?2, &y, = 0.9. Moving horizontally across the diagram with aw fixed at
0.9 (implying equal probability of cleavage fracture) we find that Jo = 330
kJ /m? for a/W = 0.25, Jo = 964 kJ/m? for a/W = 0.1; for the CCP,
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Figure 7. Geometry effect on the evolution of Weibull stress with J-integral for (2) four
different a/W ratios with W=50mm and (b) three different widths, W, with a/W=0.6
and B=W/2.

Jo = 844 kJ/m?. That is, the predicted cleavage toughness for the two
geometries with the lowest constraint are more than four times larger!

The strong effect of specimen size on cleavage fracture can be seen in Fig.
7b which displays computed Weibull stresses for CCP and TPB specimens
for a/W = 0.6 with W equal to 50, 100 and 300 mm. [B = W/2 is used
here.] Contrast the strikingly different trends — aw’s approach limiting
values for the smallest specimens while they increase steadily for the larger
geometries. The predicted trends of cleavage fracture toughness with crack
size and geometry are consistent with available experimental data.
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EFFECTS OF SIZE SCALE ON FRACTURE PROCESSES IN
ENGINEERING MATERIALS

JOHN F KNOTT
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The University of Birmingham

Introduction

This paper treats two aspects of size-scale. The first is concemed with the size-
scale at which fracture events are analysed. Although there are substantial overlaps,
four main size-scales may usefully be recognised, as follows:

i)

iii)

the MACRO -scale. This is concerned with events at the "engineering" level, and with
material properties treated as those of a continuum. Generally, the size-scale is upwards
of a few mm but, in some situations, such as that of a single dominant crack in a high-
strength steel of homogeneous microstructure, continuum concepts can be carried down
to a defect size of 0.2mm.

the MESO-scale. This comprises inherent "defects” or inhomogeneties, produced by
processing or fabrication, which are smaller than the non destructive-testing (NDT)
limit.  Such defects could be grain-boundary voids in a ceramic; non-metallic
inclusions in wrought metallic alloys; "brittle patches" in multi-pass welds or in dual-
phase steel microstructures. A very rough estimate of the size-range is 20mm-0.2mm.
In ceramics, defects of length 50um can produce catastrophic failure at a stress of only
160 MPa. For ultra-high strength maraging steel, a defect of length 75um could
produce catastrophic failure at a stress of 2GPa, but, generally, in engineering alloys,
defects of length less than 100um are of significance only under fatigue loading.

the MICRO-scale. This is associated with microstructures designed to produce a given
combination of flow stress, work-hardening characteristics and fracture resistance. The
average properties (such as 0.2% proof stress) may be determined by the dimensions of
the metal's grains, from a few pm to more than 100pm, but the brittle particles which
initially trigger off cleavage fracture are usually less than 10m in size; the smallest
size of significance is of order 10nm.

the NANO-scale. This involves events at a scale less than some 2nm: a "few" atomic
spacings. Typical examples concern the structure of the "core" of a dislocation; the
co-ordination of nearest or next-nearest neighbours in a grain-boundary or interfacial
“site" for an impurity atom; or events in the region of the tip of an atomically sharp
crack as the load applied to it increases. The question here is whether a crack
propagates in an "atomically sharp" manner, or whether it blunts, by the emission and
gliding-away of crack-tip dislocations.
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Clearly, there is some overlap between these size-scales; in particular, the boundary between
"micro” and "meso" is ill-defined for composite materials.

The second aspect of scale is that of "scaling factor". Here, the problem is how a measured
fracture-resistance parameter "scales" with the volume of material that is tested. It is
important to recognise that a "scaling factor" may be confused by the presence of some
meso-structural or micro-structural variation in the material which is not considered on the
macro- or nano-scale. A simple assumption for material is that its density is uniform.
Then, doubling the volume doubles the weight: quadrupling the volume quadruples the
weight. If, however, small volumes were prepared by casting small testpieces and large
volumes by casting large testpieces, the large pieces might contain a higher volume
fraction of shrinkage porosity, confusing the simple scaling factor.

If flow strength were measured, the force required to produce 0.2% plastic strain would be
expected to increase in a linear fashion with the cross-sectional area of the piece, but this
scaling factor could be affected by two internal variables: any increase in porosity, as
described above, plus the possibility of generating different microstructures (with different
flow properties) as a result of differences in cooling-rate involved with the production of the
larger test-volume. These examples are particularly simple and relativel /easy to analyse,
using non-destructive testing, quantitative metallography, micro-hardness measurements,
etc. but they serve to introduce two aspects of fabricated material which have relevance to its
fracture and to associated "scaling-factors": i) the presence of fabrication/processing defects
(very loosely, "meso-structure”, although often overlapping into the "micro-scale”), ii)
spatially-localised variations in micro-structure, possessing different flow and fracture
properties (these "micro-structural” variations may extend into the meso-scale: in a multi-
pass weld, more-or-less into the macro-scale).

The design stress for an engineering component is conventionally taken as a material's yield
strength or 0.2% proof strength divided by a "safety-factor". This is typically 1.5-2.0 for
wrought steel, but 4 for cast steels under monotonic loading. The higher figure for castings
reflects the fact that some castings may contain a higher defect content than otherwise
equivalent wrought material, although this is by no means a general situation and it has
been argued that design codes often discriminate unnecessarily against the use of (cheaper)
castings in a number of applications [1]. The codes take account of meso-scale defect
content on the basis of past experience and it is important to recognise that improvements
in casting technology to reduce defect content can produce much better mechanical
performance.

Under design loads, fracture is always associated with the presence of stress concentrators and
measurements of fracture resistance are made, either directly by observing the load required to
break (or energy absorbed in breaking) a testpiece containing a single, long, sharp crack or a
blunt notch, of known size, or indirectly, by determining the fracture stress for material
which is notionally homogeneous, but which actually contains a distribution of internal
("meso-scale”) defects. Measurements of the energy absorbed in fracturing blunt-notched
testpieces are not easy to relate to the design engineer's need for a fracture stress and will
consequently not be discussed further in this paper. A more useful approach is based on the
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application of finite element stress analysis to specific blunt-notch geometries, to enable the
local fracture stress, OF, to be derived directly from the ratio of applied load, Py, to general
yield load, Pg, [2,31. For "homogeneous" material, it would be assumed that the same value
of 6 would be obtained in both small and large testpieces.

Two further macro-scale measurements are the fracture stress of a testpiece containing a
single, long crack, or the fracture stress of a notionally smooth testpiece containing
"inherent" (meso-scale) defects. The former is associated with fracture-toughness testing and
fracture mechanics analysis [4]. Here, given "plane-strain” and "small-scale-yielding", the
crack-tip stress and displacement fields at fracture are characterised by a critical value of
stress-intensity-factor, Ky.. For homogeneous material (K. constant), "scaling-up" depends
simply on the testpiece dimensions and compliance function Y(a/W), e.g. for a standard bend
specimen, the fracture load Pg is given by:

_ 172
F F(B.W.a) ~ KIC Bw

Y@w) L. 1)
For tougher material, fracture in a small testpiece may initiate well after general yield and
recourse is made to the measurement of critical, post-yield parameters: crack tip opening
displacement, CTOD (8) or J-integral, J. Here, the conditions for crack-tip dominance must
be established rigorously. It is conventional to relate critical values of § or J back to
equivalent values of K and hence to contrive to "scale” from "small" to "large" dimensions,
but, it is, in principle, possible to compute the failure load for "intermediate" dimensions,
using numerical techniques.

The technique employed to treat the fracture stress of a body containing a distribution of
inherent defects is probabilistic in nature. Conventionally, use is made of the Weibull
-distribution in which the cumulative fractional probability of failure, F(G), up to and
including a given stress, O, is given, for a test volume, V, by:

F (o), =l-exp{~(lc-0,)/ap)™y ... 2)
for 6>0,, where G, is the datum or "threshold" and G, is a "scale parameter” corresponding

to the stress for which F(G), = 0.63. The exponent m is termed the Weibull modulus. The

effect of the test volume is incorporated by noting that, for a constant probability of failure,
the failure stresses o, and 6, for test volumes V, and Vy, are related through the expression.

V(o ~0)" =V, (o, -0)" L 3)

In principle, the macro-scale fracture stress reflects the "worst" defect configuration in the
test volume. For a multiplicity of defects, the "worst" configuration incorporates a crack
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size distribution, a crack orientation distribution, the possibility of partial "crack-shielding"”,
and possible toughness variations in the microstructure (e.g. variable grain-boundary
cohesive strength as a function of grain-to-grain misorientation or local chemistry). By
paying attention to processing, it may be possible to improve the fracture stress by reducing
the overall defect-content/size-distribution, but deterministic correlations between the two are
not likely to be achieved. Setting the probabilistic bounds for model systems might
be possible. The Weibull distribution is an empirical curve-fit.

Cleavage Fracture in Steel

This section is devoted to a discussion of how apparent conceptual discrepancies between
Macro-scale and Nano-scale treatments of rapid crack-advance by cleavage fracture can be
reconciled by examination of events at the Micro-scale. A typical, "valid", plane-strain
fracture toughness value for mild steel tested at low temperature is 40 MPam!/2, at which
temperature its yield strength is approx. 800 MPa. From the expression EG = K2 (1-v?),
where E is Young's modulus and v is Poisson's ration, the associated critical value of
energy release-rate, G, is approx. 7kJm-2. From the expression, 8§ = K?/26yE, the

associated CTOD is approx. Spm, i.e. 20,000 lattice spacings. Note, however, that if the
testpiece were loaded to 39 MPam!/2 (2.5% less than K), the CTOD would be only some

5% smaller (as would be the plastic zone size). Unloading to zero would imply running-
back of dislocations and decrease in CTOD, but it would still be 95% of approx. 15,000
lattice spacings. Reloading to 39 MPam!/2 restores the status quo ante. 1If the unloaded
specimen were supplied for testing, failure at 40 MPam!/? would again be anticipated, and
the original values of Gy and 8¢ would be deduced.

The Nano-scale approach to fracture follows the original model proposed by Kelly, Tyson
and Cottrell 5], and subsequently developed by Rice and co-workers [6,7]. In the model, the
crack is envisaged as being atomically sharp and the criterion for deciding on whether or not
it extends in a brittle manner was originally couched in terms of the competition between
fracture of the crack tip bond at the theoretical fracture strength (of approx. E/10) or blunting
of the crack by emission of dislocations from the crack tip at the theoretical shear strength
(approx. |1/10). Rice's work has examined in more detail the emission and movement of
dislocations away from the tip (at the Griffith stress, to avoid the thermodynamic
complication of crack "healing” at lower stresses). A "saddle-point” configuration of atoms
in the crack-tip region is identified (within two or three atomic spacings): beyond this, the
dislocations break free and move away, to blunt the crack. The model clearly differentiates
between "obviously brittle" materials, such as mica, which cleaves between silicate sheets,
and "obviously ductile" materials, such as gold. Iron is found to be a "borderline" material,
in which the balance between "fracture" and "blunting" is extremely close.

In some senses the Nano-scale approach satisfactorily describes the observed "ductile/brittle”
behaviour of iron and steel, but it does not conform to the experimental Macro-scale
observations made in low-temperature fracture toughness tests. It cannot treat effects of
plastic constraint on the ductile/brittle transition temperature; it cannot explain the variation
of fracture toughness with different ferrite/carbide dispersions in wrought steels or with
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different oxide/silicate inclusion sizes in weld metals. Recall that, for fast-running cleavage
at low temperatures the Macro-scale CTOD at the fatigue-crack tip is some 20,000 atomic
spacings, yet the Nano-scale approach would predict blunting and completely ductile
behaviour if an atomically-sharp crack were blunted, even for a blunting of less than 10
atomic spacings.

The anomaly between the Macro-scale and Nano-scale conclusions can be largely reconciled
by considering events on the Micro-scale (8]. The plastic work put in to the fracture
toughness testpiece should be regarded as "precursor work" (c.f. the notional unloading
and reloading experiment described above). The role of this "precursor work” is to
generate dislocation arrays which can initiate micro-cracks in brittle second-phase particles,
and, at the same time, create a stress/strain field ahead of the fatigue pre-crack, in which
tensile stresses some 3-4 times the uniaxial yield stress can be generated. The critical event
that leads to catastrophic cleavage fracture is then the propagation of the micro-crack nucleus
under the combination of the high level of tensile stress in the plastic zone and the stress
due to dislocation arrays. The latter is usually small (approx. 10%) compared with the
former and the criterion for fracture is that of a critical tensile stress, O, at the site of the

microcrack nucleus.

The value of OF, is, in principle, identical to that measured in blunt-notched testpieces, but

only if the material is quasi-homogeneous, i.e. if the critical distribution of micro-crack
nuclei is such that equivalent sampling is experienced in the different testpieces. In the
notched testpieces, values of o have been found to be only weakly dependent on, if not

independent of, temperature. Ritchie, Knott and Rice (RKR) [9] compared values of Ki.
from fracture toughness tests with values of 65 from blunt-notched tests to deduce a "critical
distance" X¢, at which a nucleus (in quasi-homogeneous material) would be located. In their
mild steel, X was about 120pum, equal to two grain diameters, but Curry and Knott [10]
later demonstrated that X, did not relate directly to grain size but should be regarded as a

statistical average of the locations of carbides above a certain size (e.g. the 90th or 95th
percentile of the distribution).

Further developments have followed two routes:

i) the testing of a set of notched testpieces to determine a fracture stress distribution;
treating this as a Weibull distribution; and combination of this with the stress
distribution in the plastic zone ahead of the fatigue pre-crack to obtain the
probablility of fracture at a given K-level (Beremin[11]).

ii)  the testing of blunt-notched or sharply cracked testpieces of ferritic steel weld-metals,
combined with detailed fractography to determine values of Of at the site of the
micro-crack nucleus [12]. Application to the Macro-scale crack-tip region is then
pursued via the statistical distribution of the inclusion content of the material, rather
than viag a fitted Weibull distribution to the notch fracture stress.
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Both these approaches which relate Macro-scale to Micro-scale imply some variation
(scatter) in the values of K¢ or of and this topic will be treated with reference to scale

effects, in the next section.

Here, attention is paid to the link between Micro-scale and Nano-scale. The anomalies
inherent in the direct comparison between Macro-scale and Nano-scale are obviated once the
problem is re-focused on the propagation of the micro-crack nucleus, in. the idiosyncratic
Macro-scale stress/strain field. The nucleus is produced in a brittle, ceramic particle (carbide,
oxide, silicate) and is likely to travel at high speed, giving very little time for any
thermally-activated operation of (heavily-pinned) dislocation sources ahead of the
ceramic/matrix interface [8]. The microcrack as it propagates through the ceramic
particle could be atomically sharp, so that the Nano-scale model is appropriate to treat the
question of whether it propagates into the matrix or whether it blunts. At higher
temperatures in the brittle/ductile transition region many blunted microcracks are observed in
grain-boundary carbides although inclusions in weld metals tend to cavitate.

From measured values of o and dimensions of microcrack nuclei, it is possible to calculate
values of the local "work of fracture", yp. This is found to be some 9-14Jm"2, approx. 4-7
times greater than the elastic work-of-fracture, but nowhere near the Macro-scale "precursor
work" of 7 kJm-2. An argument to support the value of 9-14 Jm=2 has been advanced in
terms of the need to create a "mechanism" or "activated state" in the region of the
atomically-sharp crack tip to allow the bond to separate fully [8). At the force maximum in
the atomic force/displacement curve, there is still an energy of interaction between the crack
tip atoms and all the surrounding atoms have positive stiffness (an "iron cage" preventing
separation). It is conceivable that extra (cooperative) atomic movement is needed to give
sufficient compliance to allow full separation to occur and that this requires extra work.
This might, for example, involve the generation and movement of crack-tip dislocations up
to a "saddle- point" configuration , later able to run back out of the free surface when the
crack-face is unloaded and only image-forces operate on the dislocation. The mechanism
encompasses the following points:

i) the necessity for "yp" to increase as "a" increases to ensure propagation-controlled

fracture (as evidenced by shifts in behaviour on going from torsion specimens to
tension specimens to notched specimens).

ii)  the independence, or weak dependence, of OF on test temperature. Crack-tip
generation of dislocations would occur at stresses of order W/ 10 and so would not be
affected by thermal fluctuations over the temperature range of interest. It is assumed
here that matrix dislocations are fully pinned, as in annealed material. Reducing the
strength of pinning can increase the value of Of.
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Scatter In Values Of Fracture Toughness And Fracture Stress

In quasi-homogenous material, there is no reason why values of X;. or op should not be

single-valued functions, since the appropriate maximum tensile stress available should
always act on uniformly "worst" microstructure. If the probability distribution function
(pdf) is a delta function, its integral, the cumulative distribution function (CDF) is a step
function i.e. up to a given value K;. no specimen breaks : above K, all specimens have
broken. In practice, there are random errors associated with experiments and the central limit
theorem then predicts that the effect of the random errors is to convert the pdf to a Gaussian
distribution [13] and hence the CDF to the error function (erf), normalised to unity. A good
test of this postulate is to plot the CDF on normal probability paper : if a straight line is
obtained, this indicates that the erf form is a good representation.

The postulate is examined by plotting on normal probability paper, CDF's relating to
results of fracture toughness tests carried out on 300M steel at room temperature (for 320°C
and 450°C tempers) and at -196°C (320°C temper). These are shown in Fig. 1 (courtesy Dr
J E King). Similar plots are presented in Fig. 2 for G150 and G125 maraging steels at room
temperature (courtesy Dr B Wiltshire); for a 0.4C 0.9Mn steel (Steel A - En8) quenched to
produce a uniform martensitic microstructure and tempered for 1h at 220°C, and tested at
-115°C; and for a dual-phase microstructure in a 0.15C 0.7Mn steel (Steel B - En3B),
generated by holding for 1 day at 740°C and quenching, after autenitising at 910°C (courtesy
Dr D J Neville [14] ), also tested at -115°C. In all cases, a median ranking has been used,
with the median rank of order n, Fp, derived from the close approximation [15].

F, =(n—03)/ (N +04)

It can be seen that for all of the fine-scale, quasi-homogenous microstructures, the erf fit is a
good one, but that the behaviour is entirely different for the dual-phase microstructure, Steel
B, Fig. 2. It is of interest to note that the K;. distribution for G150 steel, failing by fast

shear at room temperature , cannot be distinguished statistically from that for steel A,
failing by transgranular cleavage at -115°C. This points up the need to combine any
statistical analysis of fracture results with detailed fractography and a knowledge of operative
fracture mechanisms. Another interesting point connected with the form of presentation in
Figs. 1 and 2 is that it provides a simple visual means to extrapolate to obtain "lower-
bound" results. Often, these are quoted as "two standard deviations below the mean”,
equivalent to 2.28 (%) on the CDF scale, but the suggested extrapolations to 10-4 (0.01%)
indicated by the dashed lines seem not unreasonable, given the "tight" distribution. It is, of
course, possible to predict only from the set of available data points, unless a physical
model is available to justify a genuine lower bound.
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Quasi-Homogeneous Microstructures

Examine first the results for the quenched-and-lightly-tempered (220°C) En8 (steel A, Fig 2)
tested at -115°C and for 300M tempered at 320°C and tested at -196°C. Both steels contain
approx. 0.4C and possess similar microstructures in which plate-like carbide some 0.2-
0.4um thick is located at lath boundaries, where individual laths are of the order of 1um
thick. The CDF plots suggest that random errors are of order #2% or less and this is in
agreement with Neville's assessment of +1.6% for the Steel A tests. Values of Op for

similar steels have been estimated as some 3150-4400 MPa, which, given the high yield
stress, implies values of (Gpax/Oy) of order 2.5-3.0.

If 2% is allowed on the value of (Gmax/Oy) at a nominal value of 3.0, i.e. 3.06 to 2.94,
the corresponding spread in distance AX, is 0.003 (K;/oy)2. For Kjc=30Mpam!” and
Gy = 1500 MPa as typical figures, AX is only some 1.3um. For these steels, the critical

test volume is of order B(AX)2. The reproducibility of results is obtained because the
microstructure is so fine and many units, ready to fracture at virtually identical loads, are to
be found along the thickness of the testpiece. Bowen [16] has demonstrated clearly, in lower
(0.15-0.2) carbon A533B steel that the microstructural factor controlling cleavage toughness
in as-quenched (auto-tempered) martensites is inter-lath carbide thickness. More latitude on
the value of (Gax/Oy) implies the expectation of greater random errors in a fracture
toughness test, but this is coupled with the ability of coarser microstructures to demonstrate
"homogeneous" behaviour (within the less demanding constraints associated with greater
random errors).

Similar principles hold for the ductile, "fast-shear" fractures associated with G150 and G125
maraging steels (Fig.2) and with 300M fractured at room temperature (Fig.1). These steels
are ultra-clean from the point of view of non-metallic inclusions and "fast-shear” is
associated with local decohesion of tempered carbides (or intermetallics) which are again very
small particles, spaced closely. This contributes to a critical CTOD, rather than to Kj as
such, but the opening displacements associated with fracture are so small that the shear
fracture, in mode I, produces catastrophic failure under quasi-elastic conditions. The
importance of critical shear strain is, however, emphasised by the "zig-zag" fracture path and
by behaviour under Mixed Mode (/II) loading [17). Within the limits of experiment, it is
found that these fine microstructures behave in a quasi-homogeneous manner.
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“Dual-Phase” Microstructure

The behaviour of Steel B (Fig.2) is quite different from that of the other steels having fine-
scale microstructures. The fracture toughness values are widely spread, from 67.0 MPam!/2
to 93.1 MPam!/2 and there is a suggestion that points a, b, ¢ and d constitute a separate
distribution. Steel B has a deliberately-induced, "fine-scale” dual phase microstructure, with
68% ferrite, martensite "islands" of size 8ytm and ferrite mean free path of 17um. The "unit
size" is therefore of order 8 + 17 = 25um. For a value of K; averaged at approx. 75

MPam!”2 and the yield stress, taken as 600 MPa at -115°C, the "range", AX, taken as 0.003
(K/oy)? is 50pum so that approx. 4 "units” are encompassed in 2-D. Inhomogeneities in

distribution of units, may, however, act to increase the scatter (see later).

Neville [14] carried out similar tests using V-notched bend tests, having a notch-root radius
of 250pum. The dual-phase microstructures were produced in two size-scales: "fine-scale”
(73% ferrite, "island" size 6um, ferrite mean-free-path 17pum, "unit” size 6 + 17 = 23um)
and coarse-scale (72% ferrite, "island" size 57um, ferrite mean-free-path 128pum, "unit" size
=51+ 128 = 179um). Specimens were fractured and values of or were deduced, using the
Griffiths and Owen [2] analysis. Four "fine-scale" specimens gave values of o of 1534,

1540, 1544 and 1544 MPa i.e. 1541 + 0.3% MPa. Seven "coarse-scale” specimens gave
values for OF of 1470, 1483, 1497, 1503, 1510, 1528 and 1579 MPa, giving an average of

1510 MPa, but a range of 109 MPa, £3.6% of the mean.

The “fine-scale” specimens failed close to general yield, where the “range", AX
corresponding to 0.98G .« is approx. one root radius (p) = 250um. The "coarse-scale”
specimens failed at a lower fraction of general yield, such that the "range” AX might be as
low as p/2 = 125um. From these results, it is clear that the fine-scale microstructure
("unit" size 23um) exhibits quasi-homogeneous behaviour in a blunt (250um)-notched
specimen, having a (linear) "range" (at the 0.98 level) of 250im, but demonstrates scatter in
sharp-cracked tests, of range 50pum. The coarse-scale microstructure ("unit” size 179um)
exhibits scatter in a blunt-notched testpiece, having (linear) range 125-200um. Experiments
such as these help to define the conditions for quasi-homogeneous behaviour, by relating
microstructural size-scales to the extent of a high-stress region ahead of a stress-concentrator.

Another important factor in a dual-phase microstructure relates to inhomogeneities in the
"meso-scale” distribution of the two microstructures and their location with respect to the
tip of the macro-scale crack. Hagiwara and Knott [18] heat-treated HY 80 steel specimens to
produce different volume fractions of (“brittle”) upper-bainite in bainite/martensite
microstructures. The K. values at -142°C were observed to fall between two limits,
corresponding to an upper limit for "100% martensite” (GF = 3125 MPa, cleavage facet size
10pm) of 57 £ 5 MPam!/2 and a lower limit for "100% bainite" (G = 2800 MPa, facet size
38um) which was 42 + 5 MPam!/2. At 40% bainite, the scatter was increased, two
individual values of 44.7 MPam!/2 and 56.0 MPam!/2 being obtained (in a small set). The
(central) value of critical distance, X, was calculated as 62um for martensite and 46jum for

upper bainite. Fora+ 10% variation in (Gpax/Cy) the "range" for this steel at K¢ ~ 50




EFFECTS OF SIZE SCALE ON FRACTURE PROCESSES IN ENGINEERING 75
MATERIALS

MPam!”2 is approx. 40um, so that even the coarser facets stand a reasonable chance of being
"properly" sampled and this is reflected in similar scatter for both "100%" microstructures.
For the 40% bainite microstructure, it was observed that the fracture surface at X¢ = 46pm

(K1 = 44.7 MPam!/2) was composed primarily of 38um "bainite-sized" facets; whereas that
at X¢ = 62um (K¢ = 56.0 MPam!/2) corresponded to almost completely 10pm "martensite-

sized" facets. It is clear that the scatter is increased, because the lower bound corresponds to
"bainite" at the critical distance: the upper to "martensite" at this position.

Studies of this sort have been recently pursued by X Zhang [19]. The steel used is A508
pressure-vessel steel and early experiments have been made on a "100% bainite"
microstructure and a mixed "bainite/martensite” microstructure. Ten values of K¢ for each

condition at a test temperature of -80°C have been determined and use has been made of plots
on probability paper to examine the CDF for each microstructure. The results are plotted in
Fig.3, which is highly instructive. First, the "100% bainite" results appear to confirm quite
well to a Gaussian distribution and an extrapolation to 10~ probability, giving a K; (min)

value of 23 MPam!/2 seems plausible. Two specimens exhibited "pop-ins", but they
occurred at values of K of 27.5 MPam'2 and 29 MPam1/2, both significantly higher
than 23 MPam!/2,

The results for the mixed microstructure are of particular interest. It is tempting to treat
them as a single distribution and to plot the results on Weibull probability paper. This has
been done in Fig.4 on the "two-parameter” basis, i.e. taking any "threshold" Kjc value as

zero. Neville and Knott [14] have proposed a methodology to determine "threshold” values,
by choosing appropriate trial values and examining "goodness of fit" to a straight line on
Weibull probability paper, as decided, e.g. by "least-squares" regression analysis. The fit in
Fig.4 is, however, already quite good and an examination of the points on normal
probability paper (Fig.3) suggests that the data set of K;. values for mixed microstructures

would extrapolate back to a very low threshold; perhaps to zero (oreven to negative
values!); apparently to a value lower than 23 MPam!’2, the 10~ limit deduced for the more
brittle (bainite) phase in the mixed microstructure. This is a result of the wider scatter for
the mixed microstructure fracture toughness values , echoing the findings of Hagiawara in
HY80 [18]. Zhang has not yet carried out detailed fractography, but it is expected that
similar results will be obtained with respect to the "line fractions” of bainite and martensite
at X, ahead of the crack tip. An important point is the critical "line fraction” of bainite
required to produce catastrophic failure at a K1 value corresponding to that for "uniform”

bainite.

It is extremely important that a physical understanding of the micro-mechanisms of fracture
be combined with statistical analysis, particularly for materials which have a meso (perhaps
micro, or near-macro) distribution of two or more components with different fracture
toughness properties. From Fig.3, it can be seen that a naive extrapolation of the CDF for
the mixed microstructure could load to a lower-bound ("threshold") value which was lower
than the lower-bound toughness of the more brittle constituent. This is physically not
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sensible. Although the Weibull analysis can produce a reasonable straight line, (Fig.4) any
such analysis should be combined with forensic fractography to ensure that physical reality
is maintained. It is of interest, in Fig.3, to note that two "pop-in" values for mixed
microstructures fall within the data-set limits for the "uniform" bainite component.

Similarly, the points a, b, ¢ and d in Fig.2 may well represent an individual set for the more
brittle ferrite phase, although detailed fractography was not carried out to confirm this point.

Weld Deposits

Principles similar to those described above for wrought materials may be applied to weld
metals, although the fracture initiation sites are now usually non-metallic inclusions:
oxides or silicates, usually formed as a result of deoxidation processes in the weld pool [12].
These are usually small particles, at a few percent volume fraction, with distributions such
that the 95th percentile is some 2um. In his definitive work, Tweed [12] observed that
some fractures were initiated from significantly larger particles (up to 13um in size). These
had unusual chemistry (containing Ca, K) and appeared to result from some of the binder,
used to bind the coating to the electrode, breaking off and falling into the weld pool. These
large particles were associated with lower values of fracture toughness: "outliers" from the
(deoxidation product) "normal" distribution.

The fracture toughness distributions for weld metals can be examined using the CDF on
normal probability paper. As for wrought material, a straight line may be expected if the
material is quasi-homogeneous, i.e. if the sample volume is sufficient to sample something
of the order of the 96th percentile, equivalent to 2% variation on O (since Of depends

on a "2 Initial results are promising, but more data is needed to establish baselines.
Variations in inclusion size (e.g. "outliers") should show as a break in the distribution
(perhaps "pop-ins" will be observed) and analysis can the be combined with forensic
fractography to seek the causes for these discontinuities.

Results in multipass weldments may be further confused by meso/near-macro variations in
microstructure: "coarse", "as-deposited" grains and "fine", "reheated” grains. Tweed [201 has
demonstrated that these changes in microstructure have a profound effect on fracture
toughness, over and above the role of inclusions. The basic analysis with respect to
inclusions is most easily carried out in a uniform microstructure and this may be important
with respect to the quality control of the welding process. Assessment of the toughness of
the multipass weld requires an approach similar to that described for mixed
bainite/martensite microstructures, particularly if extrapolation to low probability is
involved. Fractography must be employed to examine the micro-mechanisms of fracture, to
ensure that physical sense is applied to extrapolation: a narrow scatter-band, relating to the
more brittle component may give a higher "lower-bound" than the wider scatter associated
with the "composite” weldment.
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The scale of the "meso" distribution (a few mm per "band") is such that behaviour in
notched-bar tests ( a Charpy V-notch of 0.25mm root radius) is unlikely to differ from that
in sharp-crack tests. It is salutary to recall the results of Newman, Benois and Hibbert [213,
who demonstrated a strongly bimodal distribution for Charpy energy, over a range of some
60°C.

Concluding Remarks

The paper has referred to four (overlapping) scales of structure: macro, meso, micro and
nano. It has also paid some attention to scaling factors. An argument has been put forward
that anomalies between experimental macro-scale values of fracture toughness in steels and
the predictions of nano-scale fracture theory can be resolved by considering events at the
micro-scale. This focuses attention on the features of heat-treated microstructure.

Scaling factors are associated either with pieces containing a single, long dominant crack, in
which case the concepts of fracture mechanics are deemed to hold, even going from post-
yield to small-scale yielding, or with an array of "meso"-scale defects, in which case fracture
stress distributions are analysed and size effects are related to sample volume (often not
strongly backed by fractography). With macro-scale fracture toughness values being
controlled by microstructural distributions in a critical "process zone" ahead of a macro
crack-tip, it is of interest to explore the methodologies that should be employed to explain
the distributions of fracture toughness.

Starting from first principles, a postulate is made that Kj. values should initially be

considered as single-valued "delta-functions" if the material is "quasi-homogeneous", by
which it is meant that the fracture "unit-size" is so small in comparison with the process
zone that the "worst" unit is sampled in every testpiece. The "next-worst" units will
fracture at minimally higher applied fracture load than does the "worst" unit, so that an
"avalanche" leads to catastrophe at notionally the same K. value. The central limit

theorem shows that random errors superimposed on the delta function produce a Gaussian
distribution. The CDF (an erf) then plots as a straight line on normal probability paper and
such plots have been made, using experimental results, to test the validity of the original
postulate. This seems to be well validated for fine-scale microstructures and the plausibility
of extrapolation to low probability (104) can be assessed in a simple visual manner. This
"lower bound" or "threshold" can be used in any scaling based on fracture mechanics.

In two-phase microstructures, the CDF is much more widely distributed (Figs.2, 3). It is
possible to "straighten up" such a distribution of "macro” fracture toughness using Weibull
analysis (Fig.4) but this ignores some of the essential micro-scale input, which requires
fractography. From detailed examination of mixed bainite/martensite results, there is a
danger that extrapolation of "mixed" results could give a "lower-bound" lower than the
"lower-bound" of the more brittle phase. Similar concerns exist for the meso/near-macro
distributions of "coarse" and "fine" microstructures in a multipass weld. It is strongly
advised that in these cases the "lower-bound" be based on that of the more brittle phase.
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Notched-bar testpieces will usually give more tightly-distributed fracture loads than those
associated with pre-cracked testpieces, but the crucial factor is the relative sizes of the
"sample volume" subjected to high stress (say, 98% or 95% of opax) and the microstructural

"fracture unit".
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CLOSING IN ON THE CRACK TIP

JOHN W. HUTCHINSON
Division of Applied Sciences
Harvard University, Cambridge, MA 02138

1. Introduction

This paper addresses some of the issues involved in predicting fracture toughness
of structural metals by linking the fracture process occurring at the crack tip
through the plastic zone to the outer elastic field of a macroscopic crack. The
link is extremely nonlinear giving rise to a macroscopic toughness which can be
magnified many times the intrinsic work of the fracture process. The two
principal fracture mechanisms considered are cleavage and void nucleation,
growth and coalescence.

Almost everyone starting out to learn fracture mechanics asks the question,
"How is it possible to predict fracture using elasticity theory?". The answer, of
course, is that it is not possible. The critical value of crack tip intensity for a
given material, called the fracture toughness, is determined by experiment.
Nevertheless, going back to the first beginnings of fracture mechanics, attempts
have been made to predict fracture toughness by connecting the response of a
structural component or specimen containing a macroscopic crack all the way
down to the crack tip where the microscopic fracture processes take place. The
Dugdale-Barenblatt model was interpreted by Barenblatt (1962) to represent a
crack in ideally elastic and brittle solid connecting the remote field with the
atomic separation process along the crack line at the tip. When dislocations are
not generated at the crack tip nor induced to move in the region surrounding the

tip, the macroscopic toughness, I'l¢c, for crack growth initiation approaches the

atomistic work of separation. Sophisticated techniques for computing the
atomistic work of separation based on quantum mechanics have recently been
developed. A crude estimate for the atomistic work of separation is the
theoretical lattice strength times a displacement proportional to the lattice
spacing, i.e. roughly (E/30)b, where E is Young's modulus and b is the lattice

spacing. For most metals and ceramics this is on the orderof 1t0o 5 J m-2 (see
Table 1). Thus, a rough estimate for the fracture toughness of an ideally brittle
material is

I ~ Eb/30 )

Extrinsic factors, such as crack deflection and crack bridging by interlocking

grains in polycrystals, can magnify I'[¢ above the atomistic work of separation,

but such effects are relatively small compared to magnification resulting from
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plastic deformation at the crack tip.
There is considerable interest and effort underway to compute fundamental

quantities such as the work of separation for atomic lattices and interfaces from
first principle atomistic physics. This effort brings together segments of the
mechanics and physics communities with the common goal of bridging the gap
between the fracture events at the atomic scale and macroscopic fracture
properties. Except perhaps for ideally brittle materials, the gap is not likely to be
easily bridged. For most structural metals and metal/ceramic interfaces of
interest, a plastic zone separates the crack tip and the outer elastic regions of the
solid. As suggested in Table 1, the plastic zone can act as a huge multiplier
leading to a macroscopic work of fracture which is larger than the atomic work of
separation by factors of tens or even hundreds. The importance of plastic
deformation in enhancing toughness was recognized years ago by the pioneers in
fracture mechanics, such as Irwin and Orowan, shortly after the first fracture
toughness measurements were made. Only recently, however, have efforts been
made to quantify the connection between macroscopic toughness, plasticity and

the 'local' work of the fracture process I'g. Some of the recent work on this

problem will be mentioned here. An important distinction arises between a
material whose fracture process is controlled at scales which are on the order of
microns (see Table 1) and failure of a material or interface controlled at atomic
scales. Examples of the former will be discussed first.

TABLE 1. Fracture Process, Macroscopic Initiation Toughness I'l¢, and Controlling
Microstructural Scale

Fracture Process e 0 m2) 103m 10%m 10m

Cleavage of highly brittle 1~5 b
metals, ceramics and glasses by
atomic separation (no plasticity)
Cleavage crystals and interfaces 10~100 b

between metals and ceramics by
atomic separation (some plasticity)

Cleavage of structural steels 102~10% D S

Void nucleation, growth and 103~10° D S
coalescence in structural metals

( b=atomic lattice spacing, D=particle spacing and S=particle size)

2. Models of Fracture Initiation Toughness in Structural Metals

More than twenty years ago, models were proposed to predict initiation
toughness for ductile structural metals for the two most important fracture
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process mechanisms, cleavage and void nuclcation, growth and coalescence. A
critical aspect of both of these processes in structural metals is the essential role
of small second phase particulate components, such as brittle carbides in steel or
oxide particles in aluminum, either in triggering cleavage or in nucleating voids.
The particles are typically on the order of a micron in size and spaced apart by
distances on the order of tens to hundreds of microns (cf. Table 1). These are the
controlling scales for the fracture process in these materials. The problem of
predicting the toughness of such materials does not require the mechanics
analysis to bridge all the way to the atomistic scale. Of course, fundamental
properties at the atomic scale influence the macroscopic properties, but their
influence on the nucleation of micro-cracks or voids can be determined from
analyses which decouple from the fracture toughness models, as will be made
clearer below. We begin with a brief discussion of the outcome of two early
models of this class.

The critical event in the cleavage of structural steels is the initiation of a
dynamic micro-crack in a brittle carbide near the macroscopic crack tip. Under
favorable conditions, this crack spreads from the particle, serving as the nucleus
of the running cleavage crack. From then on, the crack is able to "outrun" most
of the plasticity thereby avoiding crack blunting which would lead to arrest. For
structural metals capable of cleaving, Ritchie, Knott and Rice (1973) assumed
that initiation and spread of cracking beyond the brittle particle requires

attainment of a critical stress of. This is taken to be the same critical stress

identified in notched bar tests in the earlier work. Ritchie et al. postulated that
the stress ahead of the macroscopic crack must attain the critical stress level over
distances which are comparable to the spacing D of the brittle particles. Using a
plane strain, elastic-plastic analysis for the stress distribution ahead of a crack tip,

these authors argued that as long as of is less than between 3 to 5 times the yield

stress, 0y, depending on the strain hardening level, the stress ahead of the crack
will exceed the critical stress. The postulated condition will be met when the
mode I stress intensity factor reaches

KIC ~C oy'\[ﬁ ‘ (2)

Here, ¢ is a numerical constant approximately equal to 3 but depending
somewhat on strain hardening. In terms of the energetic measure of toughness,

F=(l-v2)K2/E, where Vv is Poisson's ratio, this estimate becomes

I, ~c*(cy*/E)D 3)

The range of values of listed in Table 1 are representative of values predicted by
(3) for steels in the temperature range in which they are cleavable. If of exceeds
3 to 5 times oYy the critical events cannot occur, according to this criterion, and

cleavage cannot be initiated. The model regards of as a parameter to be

determined experimentally with either a cracked specimen or a notched
specimen. Attempts to relate this critical stress to more fundamental material



84 CLOSING IN ON THE CRACK TIP

parameters have not been successful. The value of the model, to the extent it is
valid, is that it decouples the determination of of from the fracture toughness
model.

When the controlling mechanism is void nucleation, growth and coalescence,
Rice and Johnson (1970) considered the interaction of a nucleated void a distance
D ahead of the unloaded crack tip. A simplified version of their analysis is as
follows. The criterion for initiation of macroscopic crack growth states that
initiation occurs when the void links up with the tip. In turn, this requires that the

crack tip opening displacement 8~0.5 K2/(Ecy), be equal to about one average
void spacing D. The resulting initiation toughness is

I, ~20,D @

There is a dependence on the size S of the void-nucleating particles, or
equivalently on the volume fraction of the particles, but this dependence is weak
as long as S/D is small. Detailed finite strain computations for the interaction of
a void with a crack tip have corroborated this simple relation (McMeeking 1977).
Representative values from this equation are also included in Table 1 and are
seen to be extremely large relative to typical values of the atomistic work of
separation. The significance of a brittle to ductile transition in mechanism, from
cleavage in (3) to void coalescence in (4), is evident because of the relative factor
oY/E. The initiation toughness can be even larger than (4) if nucleation of the
voids from the second phase particles becomes the controlling step in the fracture
process. As in the case of the other mechanism, atomistic considerations will
come into the picture through considerations such as the strength of the interface
bonding the void-nucleating particles to the metal matrix but not at the scale of
the particle spacing which controls this fracture process.

3. Toughness Enhancement due to Plasticity in Small Scale Yielding

Small scale yielding pertains when the crack length and other in-plane length
quantities are long compared to the size of the plastic zone at fracture. Under
these circumstances the applied load experienced by the crack tip is specified by

K or, equivalently, by I'. Metals with some ductility nearly always display an
increasing resistance to crack growth under plane strain conditions in the form of
a crack growth resistance curve, I" versus crack advance Aa, as sketched in Fig. 1.

Following initiation of growth at T'[¢, the resistance curve rises, approaching an

asymptote I'sg, corresponding to growth under steady-state conditions.
Typically, the amount of growth needed to attain steady-state is several times the
size of the plastic zone at that level of loading.
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Aa

Figure 1. Typical crack growth resistance behavior when plastic flow occurs.

A study of the role of plasticity in enhancing crack growth resistance was
carried out by Tvergaard and Hutchinson (1992). These authors analyzed a
model which embeds a traction-separation law within an elastic-plastic
continuum. The traction-separation law is considered to characterize the fracture
process. The two primary parameters specifying this separation law are its peak
stress, O, and the area under the curve, which is the work of separation per unit

area, I'). The material parameters characterizing the elastic-plastic continuum

are its Young's modulus, Poisson's ratio, yield stress oy, and strain hardening
exponent N. The conventional flow (incremental) theory of plasticity is assumed
to describe the metal with the Mises invariant employed to model isotropic
hardening. Prior to the initiation of crack growth, the J-integral can be used to
connect the remote field, whose amplitude is K or I‘=(1—v2)K2/E, to the
separation zone at the tip. This procedure shows that the crack faces at the tip
reduce to zero traction, corresponding to the initiation of crack advance, when I’
attains I’'g. Thus the model says that the initiation toughness is the work of the
fracture process:

I‘Ic = FO (5 )

Resistance behavior following initiation requires extensive numerical
calculation, which was performed using finite element methods. From
dimensional analysis, one can see that the steady-state toughness must depend on
the parameters of the separation law and the elastic-plastic material according to

I, =T, F(i,NJ ©)
Oy
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The numerical calculations reveal a weak dependence on other details of the
shape of the separation law and on Y/E and v. The multiplicative influence of
plasticity on the crack growth resistance is reflected in the appearance of the
factor F in (6). Computed dependence of F for plane strain crack growth is
shown in Fig. 2 for three values of the strain hardening exponent. For G less
than about 2.5 6, there is little crack growth resistance, i.e. I'ss =T'Ic =T"p, and
almost no enhancement of toughness due to plastic deformation taking place in
the plastic zone. (Of course, for a fracture process such as void growth and
coalescence, plastic dissipation is an integral part of the work, I'0, of the process

itself.) For peak stresses satisfying G>2.5 oY, depending somewhat on strain
hardening, the enhancement of steady-state toughness due to plasticity can be
appreciable. Multiplicative factors above 20 to 25 are difficult to compute with
the model but, nevertheless, are clearly possible.

201
T
Io N=0[ J] .2
10}
0 ' 6/cy

Figure 2. Ratio of steady-state toughness to the work of the fracture process for plane
strain crack growth with oy/E=0.003 and v=0.3. Accurate plots are given in Tvergaard

and Hutchinson (1992)

Implications of these results as applied to structural metals failing by the void
coalescence mechanism are discussed in the next section. Their implication for
metals and metal/ceramic interfaces whose fracture process is controlled at the
atomic level by cleavage will be taken up in Section 5.

4. Crack Growth Resistance for Void Growth and Coalescence

To make contact with the results for the model discussed in the previous section,
we note that the work of separation for a planar band of localized deformation
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containing voids is approximately

I, = -;-O'YD @)

with some dependence on the strain hardening index N but little dependence on
the initial void volume fraction fo~ (S/D)3, as seen in Fig. 3b. The peak stress,
G, attained in the separation of the localized band is sensitive to both N and fQ
(Fig. 3a). Use of the results in Fig. 3 for the fracture process together with the
model predictions (5) and (6), enables one to predict both the initiation and
steady-state toughnesses as a function of the four parameters of the material
which primarily influence toughness, 6y, N, D and fg. A fifth parameter, a void
nucleation stress or strain, must be considered if the particles are especially well
bonded to the metal matrix.

3 Jo 1}
Y sl 2
.2
4 .5- .1\
3} 1 —
2} N=D
l 3
0 N .' 'Y o 1 3 i
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a) b)

Figure 3. Trends in peak stress and work of fracture for separation of a localized band
undergoing void growth and coalescence with oy/E=0.003 and v=0.3. Accurate plots are
given in Tvergaard and Hutchinson (1992)

By (5) and (6), the initiation toughness predicted by this model is
1

which can be seen to be only one fourth of the value predicted by the Rice-
Johnson model in (4). The assumption leading to (4) is that the fracture process
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is controlled by the interaction of a single void with the crack tip, while the
implicit assumption leading to (7) and thus to (8) is that the fracture process zone
extends ahead of the tip by at least several void spacings. The computations of
Tvergaard and Hutchinson reveal that there are indeed two regimes: one where
the length of the process zone is large compared to D when (8) is valid, and a
second in accord with the Rice-Johnson model (4) wherein the fracture process
zone is largely confined to the nearest void to the tip. The transition to this

second regime occurs when G/cy becomes sufficiently large, or, equivalently,

for example, when fy becomes sufficiently small (cf. Fig. 3a).

Recently a number of groups have developed computational models for crack
growth in structural metals which are governed by the mechanism of void
nucleation, growth and coalescence. Representative work is contained in the
following publications: Needleman and Tvergaard (1987), Rousselier, Devaux,
Mottet and Devesa (1989), Brocks, Klingbeil, Kunecke and Sun (1994), Bilby,
Howard and Li (1993), and Xia, Shih and Hutchinson (1994). All these models
use material elements ahead of the crack which contain voids and which
approximately replicate the nucleation, growth and coalescence under the local
conditions of stress and strain. Damage parameters such as the size and spacing
of the void-nucleating particles are usually chosen such that the model
reproduces a selected set of crack growth data but, in principle, they could be
chosen to fit the microstructural quantities themselves. Once calibrated, the
models can be used to predict crack growth and stability, together with load-
deflection histories, under a wide variety of conditions. The strong size and
geometry dependence of crack growth behavior under large scale yielding, which
is associated with differing triaxial stress conditions near the tip, is accurately
captured by these models. Thus, for the important class of structural metals
failing by the void mechanism, a computational method is now more or less in
place which can be used to predict the response of cracked structures and
components. The models are first principles models in the sense that they bridge
to the scale which controls the fracture process. More fundamental
understanding at even smaller scales of the connection between the damage
parameters to the features of the microstructural and the chemical make up of the
material can be obtained from studies which uncouple from the crack problem.

5. Crack Growth Resistance for Atomic Cleavage

While it has been possible to bridge through the plastic zone to the fracture
process zone for the void mechanism, the same cannot be said when the fracture
process mechanism is atomic separation for reasons which will now be discussed.
At first sight, the model of Tvergaard and Hutchinson discussed in Section 3
would seem to be applicable to this problem, if one identified the traction-
separation law with that for atomic separation. One obvious possible objection is
that it is most unlikely that conventional continuum plasticity theory is applicable
at the scales below about 1 micron, which necessarily come into play in bridging
to the atomic scale. There is an increasing body of experimental evidence that a
strong size effect exists for plastic deformation at length scales below about 1
micron, with significantly increased rates of strain hardening at the smaller
scales. Conventional continuum plasticity theory does not incorporate size-
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dependent hardening effects. Moreover, all solutions for crack tip stress
distributions obtained from conventional elastic-plastic continuum theory predict
that the maximum stress that can be achieved ahead of the crack tip is only about
3 to 5 times the initial yield stress of the solid, depending on the strain hardening
exponent N. Such stress levels are well below the values needed to produce
atomic separation in most metals. In particular, this is true for the model
discussed in Section 3, as is evident from the steady-state toughness trends in Fig.
2. If one were to take the predictions of the conventional plasticity models at
face value, one would conclude that plasticity eliminates the possibility of atomic
cleavage as a mechanism of fracture.
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Figure 4. Trends in the ratio of steady-state toughness to the work of crack tip separation
(0Y/E=0.003 and v=1/3 ). Accurate plots are given in Suo, Shih and Varias (1993)

The thrust of the above discussion is that one must turn to theories of
plasticity which incorporate more realistic hardening descriptions, or, possibly, to
dislocation modeling at the smallest scales, if there is to be any hope of bridging
to atomic separation. Strain gradient theories of plasticity are currently under
development which incorporate scale-dependent strain hardening. Whether these
will bridge to the crack tip remains to be seen. In lieu of a more realistic way of
dealing with small scale plasticity, Suo, Shih and Varias (1993) proposed a model
which is capable of generating the large stress values necessary at the tip to
achieve atomic cleavage. They restricted consideration to metals which emit no
dislocations from the crack tip, and they postulated the existence of a dislocation-
free elastic strip zone along the projected crack line, as sketched in the insert of
Fig. 4. The half-height of this zone is taken to be D and is imagined to have a
dimension which is small compared to a micron corresponding, at least
qualitatively, to the smallest average spacing between dislocations. Outside the
elastic strip, the authors used conventional elastic-plastic continuum theory to
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represent the constitutive behavior. The existence of the elastic strip between the
outer plastic zone and the tip permits the stresses in the model to rise to the high
levels needed to bring about atomic cleavage. For a small scale yielding
formulation, Suo et al. computed the steady-state relation between the remote

loading, as measured by the steady-state toughness I'ss, and the energy release
rate at the crack tip in the elastic strip, which is set to be equal to the atomic work

of separation T'g. The resulting relation is plotted in dimensionless form in Fig.
4. Macroscopic steady-state toughnesses in excess of 10 to 100 times the

atomistic work of fracture are clearly implied when the parameter D<5Y2 /(EI)
is sufficiently small. Evidence for such a large multiplicative influence of
plasticity on toughness has recently been presented for cleavage of several
metal/ceramic interfaces, including a gold/sapphire interface (Reimanis,
Dalgleish and Evans, 1991).
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RELATIONS BETWEEN CRACK GROWTH RESISTANCE AND
FRACTURE PROCESS PARAMETERS UNDER LARGE SCALE
YIELDING

VIGGO TVERGAARD
Department of Solid Mechanics
Technical University of Denmark, Lyngby, Denmark

Abstract. Mode I crack growth under large scale yielding conditions is studied
by comparing numerical plane strain analyses for four different test specimen
geometries. The fracture process is represented in terms of a cohesive zone
model, for which the separation work per unit area and the peak stress required
for separation are basic parameters; but where also a plastic strain effect on the
fracture process is incorporated. The differences between crack growth resis-
tance curves predicted for different specimen geometries are in general agree-
ment with the different T-stress levels obtained for different specimens. In
addition, a specimen size dependence of the crack growth resistance curves is
illustrated.

1. Introduction

Plastic dissipation in the material around a crack tip adds significantly to the
fracture toughness, so that the value of the stress intensity factor needed to
advance a crack can be much larger than that corresponding to the work of
fracture per unit area of crack surface. Computations of Tvergaard and Hutchin-
son (1992, 1994) for mode I plane strain crack growth under small scale yield-
ing conditions have been used to study this dependence, with the fracture pro-
cess represented in terms of a traction-separation law in which the primary
parameters are the work of separation per unit area, Iy, and the peak traction,
o . These studies show that the plasticity induced increase of the fracture tough-
ness depends mainly on the peak traction to initial yield stress ratio, 6/0y , and
the strain hardening exponent, N .

With the cohesive zone model employed by Tvergaard and Hutchinson
(1992, 1994) the fracture process is entirely stress dependent. But e.g. for an
elastic-plastic solid the maximum stress achieved ahead of a crack-tip is
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2.970y , so here the model predicts only crack blunting with no crack advance,
if & exceeds 2.970y . Similar behaviour is found for strain hardening materi-
als, at somewhat higher values of the limiting stress. But in the case of metals
failing by the mechanism of void nucleation, growth and coalescence there is
also an effect of intense plastic straining in the near vicinity of the crack tip,
which accelerates the void growth process and the nucleation of more voids. To
incorporate such plastic strain influence Tvergaard and Hutchinson (1995) have
used a modified traction—separation law, in which the peak separation stress o
is reduced continuously as a function of local plastic strain for strains above a
critical value €, (see also Tvergaard, 1992). The computations of Tvergaard
and Hutchinson (1995) for conditions of small scale yielding have shown that
the modified model allows for a better representation of very tough materials
with a high value of the tearing modulus defined by Paris ez al. (1979). It is
noted that this modified model displays some mesh dependence, since the plas-
tic strain predicted near the tip is sensitive to the element size along the line of
the crack.

Predictions of crack advance by a void coalescence mechanism can be
directly based on the porous ductile material model of Gurson (1977), as has
been applied by e.g. Needleman and Tvergaard (1987, 1991), Rousselier (1987),
Sun et al. (1992), Brocks et al. (1994) and Xia et al. (1995). In such finite ele-
ment models the mesh must capture the interaction between the crack tip and
the nearest voids, and many of the models have taken the element size to be on
the order of the void spacing. As such, these models also display mesh depen-
dence.

In the present paper, the modified traction-separation law, with a plastic
strain dependence of the peak stress, is used to analyse crack growth under large
scale yielding conditions. For a given set of parameters describing the fracture
process results corresponding to four different specimen geometries are
compared. Also the specimen size dependence of the crack growth resistance
curve is studied, including specimen sizes large enough to give fully contained
plastic yielding.

_2. Problem Formulation and Numerical Method

Each of the four different specimen geometries considered here are analysed by
numerical solutions for the region shown in Fig. 1a, with appropriate symmetry
boundary conditions or load boundary conditions specified at the different
edges. Here, A, denotes the initial crack length. For a double edge—notched
tension strip (DENT) the full specimen covers the region —Hy < x;, = Hy,
0 < x; < 2W,, and uniform tensile stresses are applied at the ends. For a
single edge-notched tension strip (SENT) or a single edge-notched bent strip
(SENB) the full specimen covers the region —Hj, < x, = Hy,0=x; =W,
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Fig. 1. Example of finite element mesh. (a) Region analysed numerically, to represent
SENB, SENT, DENT or CCP specimens. (b) Refined mesh along the crack line.

with uniform tensile stresses or linearly varying pure bending stresses, respec-
tively, applied at the ends. For a center—cracked panel (CCP) the full specimen
covers the region -H, < x, < Hy, - W, < x; < W,,, and uniform tensile
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stresses are applied at the ends. In the the following these four specimens will
be referred to by the abbreviations mentioned in parentheses.

The material is modelled as an elastic—plastic solid, using the Mises yield
surface with isotropic hardening. Furthermore, the fracture process is repre-
sented in terms of a plastic strain dependent cohesive zone model, as in the
investigation of Tvergaard and Hutchinson (1995) for conditions of small-scale
yielding. The approximating assumption is made that plane strain conditions
apply throughout the specimens analysed.

In the analyses finite strains are accounted for, using a convected coordinate,
Lagrangian formulation of the field equations, in which g;; and Gij are metric
tensors in the reference configuration and the current configuration, respec-
tively, with determinants g and G, and ny = Y5(Gy; — gy) isthe Lagrangian
strain tensor. The contravariant components T of the Kirchhoff stress tensor
on the current base vectors are related to the components of the Cauchy stress
tensor o by 9 = /G/g oY . Then, in the finite—strain generalization of
J,~flow theory discussed by Hutchinson (1973), an incremental stress—strain
relationship is obtained of the form U = Liklp, . The value of the tangent
modulus at a given stress level is determined from the uniaxial true stress—loga-
rithmic strain curve, which is taken to be specified by the power law

o/E , for 0 =<oy
€= 1/N ey
(oy/E)(o/oy) ", for o = oy
b o 6 G
A
g1 | N
| l
1 |
' 5
: bc |
| PANCEL |
I I
! : 5

Fig. 2. Traction-separation relation for fracture process.




RESISTANCE CURVES IN LARGE SCALE YIELDING 97

Here, oy is the initial yield stress, E is Young’s modulus, and N is the strain
hardening exponent.

The traction—separation relation used by Tvergaard and Hutchinson (1992,
1994) to. model the fracture process (Fig. 2) is fully specified by the work of
separation T, the peak stress G , and the shape parameters 8,/8; and
8,/8. . According to this model failure initiates when the true normal stress
ahead of the crack reaches the value G, and no crack growth is predicted at all,
if the stress level G is not reached. The modification of this separation law,
used by Tvergaard and Hutchinson (1995) to represent a plastic strain controlled
failure mechanism, is analogous to that employed by Tvergaard (1992, 1995) in
studies of ductile particle debonding during crack bridging in ceramics. With
this modification the peak stress G in the traction—separation relation of Fig. 2
is gradually reduced when the effective plastic strain €} along the crack path
has exceeded a critical value " €,

60 , for eg < €
& =40, - A(Ar(eg - ec)/Ae , for €, < €l <€, + Ae 2)
60—-A6 , for €f = e, + Ae

Thus, with (2) the cohesive zone model accounts for a reduction of the material
strength, which could result from plastic strain controlled nucleation of voids or
from accelerated void growth near the crack tip.

The numerical solutions are obtained by a linear incremental method using a
finite element approximation of the displacement fields in the incremental ver-
sion of the principle of virtual work. The elements used are quadrilaterals each
built-up of four triangular, linear-displacement elements. In the uniform mesh
region in front of the initial crack~tip the length of one square element is
denoted as A, (see Fig. 1b), and the uniform mesh region contains 100 X 3
quadrilaterals. Most of the computations are carried out with &, = 0.1A,,
8,/8. = 0.15 and 8,/d. = 0.5, and with W, = 1000A,, . The value of the
effective plastic strain €f in (2) is calculated as the average over the quadrilat-
eral element adjacent to the point considered in the debonding region. The edge
loads at x, = Hy, are applied incrementally, and a special Rayleigh-Ritz finite
element method is employed to control nodal displacements within the fracture
process zone (see also Tvergaard, 1990b).

Two reference quantities K, and R, are used for the presentation of results

2
) : _ 1 (Ke) 1 BL,
KO = [EFO/(I -V )] » RO T 3n (CY) 3n (1 — 'VZ)OZY ©)

Here, K, represents the mode I stress intensity factor needed to advance the
crack when plastic dissipation is negligible; i.e. the value needed to supply just
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the work of the fracture process I'y, when the modification (2) is not active.
The expression for T’y is

3¢
Q=IG®=%MQ+%—6J @)
0

The reference length R, scales with the size of the plastic zone when
K=K,;.

The value of the J—integral is calculated on a number of contours around the
crack—tip. After some crack growth the path-independence of the J-integral
breaks down for contours close to the tip, but remains in a region of more
remote contours. The K—values to be shown in the following are computed from
J—integrals on remote contours.

3. Results

The elastic—plastic material to be considered here has the parameter values
N =0.1 and o0y/E = 0002 in (1), and the value of Poisson’s ratio is
v = 0.3 . For the traction—separation relation the two parameters 60 and T,
(or K,) appear directly in the figures presenting the results. The first computa-
tions are carried out for the region shown in Fig. 1a, with Ay/W, = 0.6 and
Hy/Wy = 2, and with Ag/Wy = 1000, 3c =014, e = 0.05,
Ae = 005 and (G, — AG)/oy = 10.
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Fig. 3. Crack growth resistance curves for specimens with 0o/0y = 3.5, € = 0.05
and AO/WO = 0.6.
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Fig. 3 shows crack growth resistance curves computed for 60/0Y =35,
corresponding to the four different specimen geometries considered in this
paper. It is well known that different specimen geometries give rise to different
levels of T—stress at the crack-tip (Hancock, Reuter and Parks, 1991; Xia, Shih
and Hutchinson, 1995). Thus, different specimen geometries will give rise to
different crack growth resistance curves, even in cases where the specimen size
is large enough to give small-scale-yielding (Tvergaard and Hutchinson, 1994).
In the present case the length of the initial uncracked ligament satisfies the
relation W, — Aj = 3.08 (KO/(IY)2 , which is within the ASTM-require-
ments for compact tension specimens (since 3.08 > 2.5) , so that such speci-
mens would be large enough for testing linear elastic fracture mechanics (e.g.
see Hutchinson, 1979; Carlsson, 1985). It is known that compact tension speci-
mens show rather large constraint, T/oy = 0.4, and the present SENB speci-
mens are rather similar to that; but DENT specimens have a negative T—stress
and CCP specimens have a rather large negative T—stress, giving a larger plastic
zone, so that larger specimens size would be required in these cases for valid
K- testing. It is noted that if the specimen width W, was taken to be
50 mm , then for a steel the reference fracture toughness K, would be about
34 MN/ m??2, which would correspond to a tough steel. :

For the material parameters used in Fig. 3 previous studies (Tvergaard and
Hutchinson, 1992, 1995) have shown that a steady—state fracture toughness is
reached under small-scale-yielding conditions in the range of Aa/R, values
considered, and that plastic strain has no effect on the fracture process, as €>
remains smaller than €. . This type of behaviour is found in Fig. 3 for the
SENB, SENT and DENT specimens, with different values of the steady—state
fracture toughness due to the different T—stress levels resulting from the speci-
men geometries. For the CCP specimen the crack growth resistance is signifi-
cantly higher than found for the other specimen geometries, the plastic strain
controlled failure mechanism (2) does play a role, and a steady—state fracture
toughness is not reached in the range studied.

In Fig. 4 the interface strength is higher, 60/0Y = 3.75, while all other
material parameters are identical to those in Fig. 3, and thus W, — A, = 2.88
(Ko/0y)? . Here, the values of € near the crack—tip exceed € slightly for the
SENB, SENT and DENT specimens and much more for the CCP specimen. In
this case none of the crack growth resistance curves reach their maximum in the
range considered; but still the SENB and CCP specimens show the lowest and
highest crack growth resistances, respectively.

In Fig. 5, for -(AIO/OY = 4.0 and all other material parameters unchanged, the
specimens satisfy the relation W — Ay = 2.70 (Ky/0y)? . Here, the values
of €& near the crack-tip exceed €. significantly for all four specimen geome-
tries, so that the plastic strain controlled failure mechanism (2) plays a strong
role. It is seen that the differences between the crack growth resistance curves
predicted for the four specimen geometries are much reduced compared to Fig.
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Fig. 4. Crack growth resistance curves for specimens with GO/OY = 3.75,

€c = 005 and Ay/W, = 0.6.
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Fig. 5. Crack growth resistance curves for specimens with 60/ oy =40, ¢ =005
and Ay/Wy = 0.6.

4, which continues the trend going from Fig. 3 to Fig. 4. This also agrees with
the trend found by Tvergaard and Hutchinson (1995) for small-scale—yielding
conditions that the predicted T—stress dependence of the crack growth resistance
curves is reduced as the values of G,/0y and e are increased. In Fig. 5 the
lowest curve is still that for the SENB specimen, in most of the range consid-
ered; but the curve for the CCP specimen is here slightly below that for the
DENT specimen.
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Fig. 6. Crack growth resistance curves for different size DENT specimens with identical
material parameters, Gy/0y = 3.75, €, = 0.05, Ay/W, = 1000, §./A, = 0.1
and A/W = 06.

The specimen size dependence is considered in Fig. 6 by comparing crack
growth resistance curves for DENT specimens of four different sizes. The mate-
rial parameters are identical to those considered in Fig. 4, with 0,/0y = 3.75
and with Ay/W, = 1000. To introduce the different specimen sizes the
dimensions A,, W, and H; in Fig. 1 are replaced by A, W and H,
respectively, with the ratios A/W = 0.6 and H/W = 2 fixed. Then, it is
clear that the curve marked W = W, in Fig. 6 is identical to that for the
DENT specimen in Fig. 4, and that the other three curves in Fig. 6 correspond
to specimens 2, 4 and 6 times larger, respectively. It is noted that the fixed
value of A,/W, is necessary in this comparison, as it has been found (Tver-
gaard and Hutchinson, 1995) that the plastic strain dependent traction—separa-
tion relation (2) results in a certain mesh sensitivity of the predicted crack
growth resistance curves. Thus, when this model based on the embedded cohe-
sive zone is used for a particular material, both the parameter values specifying
the traction—separation law and the mesh size along the crack growth path must
be kept fixed. It is noted that the critical strain value €. in (2) is only slightly
exceeded by €f near the tip in these four computations.

The curves in Fig. 6 show that there is a specimen size dependence, such that
the level of the predicted crack growth resistance decays for increasing speci-
men size; but the curves for the two larger specimens differ only little. The
values of the ratio (W — A)/(K,/0y)? for these four specimens are 2.88 ,
5.75, 11.50 and 17.26 , respectively, which indicates, even for DENT speci-
mens, that the sizes of the larger specimens are well into the range representing
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Fig. 7. Crack growth resistance curves for different size DENT specimens with identical
material parameters, 0,/0y = 3.75, €. = 0.05, Ao/Wq = 1000, dc/Ay =02
and A/W = 06.

small-scale—yielding. Thus, it is assumed that the two lower curves in Fig. 6
correspond to the behaviour under conditions of small-scale-yielding. In fact,
to directly compare with the small-scale-yielding results of Tvergaard and
Hutchinson (1995) a computation for a large SENB specimen, W = 6W,, has
been carried out with somewhat different material parameters (oy/E = 0.003,
0o/0y = 4.0, (60 - A(AI)/GY = 0.1 and e, = 0.03), and good agreement
has been found.

In Fig. 7 resistance curves are compared for the same four sizes of DENT
specimens, with the same set of material parameters apart from one difference,
8. = 0.2A, . This double value of the critical separation . also doubles the
values of T, and R, , respectively, compared to the values in Fig. 6. Thus, for
the same amount of crack growth, Aa/W, , in Figs. 6 and 7 the value of
Aa/R, is only half as large in Fig. 7, since the plastic zone size is doubled. In
Fig. 7 the values of the ratio (W — A) J(Ko/ GY)2 for the four specimens are
1.44, 2.88, 5.75 and 8.63 , respectively, and it is found that in all four cases
the plastic strain controlled failure mechanism (2) plays a strong role. The crack
growth resistance curve for the largest specimen in Fig. 7, W = 6W,, may
have converged towards the result for small-scale-yielding; but clearly the
curve for W = 4W, has not, as this curve shows somewhat higher crack
growth resistance. In the computation for the smallest specimen, W = W, the
path independence of the J-integral breaks down for contours close to the grow-
ing crack, as in all computations, but here to such an extent that there is hardly
any path independence for Aa/R, > 2 . This may partly explain why the
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crack growth resistance curve for W = W, is only slightly above or even
intersects that for W = 2W,, in Fig. 7.

A comparison of crack growth computations for different specimen geome-
tries was also carried out by Xia et al. (1995), using a modified Gurson model
(Tvergaard, 1990a) to represent the fracture process. With a fixed set of material
parameters and a fixed mesh size along the crack growth path, to represent a
particular material, this model was found to reproduce important aspects of the
specimen shape dependence of crack growth resistance curves. Also the alterna-
tive approach adopted in the present paper, based on a plastic strain dependent
cohesive zone model, shows trends in the specimen shape dependence that
agree with experimental observations (as e.g. Hancock et al., 1991). Regarding
a specimen size dependence of the crack growth resistance curves it is noted
that also Xia et al. (1995) found increasing resistance for decreasing specimen
size.
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Abstract

Ductile crack propagation is modelled for deeply side-grooved double cantilever
beam (DCB) and compact tension (CT) specimens using simple beam on elasto-
plastic foundations. The side grooves dominate the constraint at the crack tip so
that the deformation within the fracture process zone is one of uniaxial strain.
Under these conditions there is little change in constraint with crack growth and
the specific essential fracture energy is constant. In DCB specimens there is self
similar crack propagation, but there is a rising Jy-curve that is size dependant. In
small CT specimens the crack growth is not self similar and the fracture work is
not constant. Under these conditions even the initiation J is not necessarily equal
to the specific essential energy.

1. Introduction

There are three problems in the development of non-linear elastic fracture for
ductile metals. Firstly unloading necessarily occurs during crack propagation that
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causes completely non-proportional deformation as shown experimentally
(Hancock et al., 1993: Joyce and Link, 1995) and demonstrated theoretically (Xia
and Shih 1995a,b). The J-integral is the rate of change in potential energy of the
system that, when applied to an elasto-plastic specimen, includes the plastic work
dissipated outside the FPZ as well as the fracture work dissipated within the FPZ.
The J approach works for initiation because the work dissipated outside the FPZ
in an elasto-plastic specimen cannot be distinguished from the energy stored in an
equivalent non-linear elastic specimen and hence at initiation J is the specific
fracture energy, R, at initiation. Even in the case of fracture initiation, J is only
a material property if the crack grows in a self similar fashion. Barenblatt's
(1962) hypotheses for the fracture work, R, being a material constant, R, given
by

R, - fo‘foda )

apply equally well to elasto-plastic fracture as they do to elastic fracture. If the
size of the FPZ changes with crack growth, then R+R_, and Jz#R even at
initiation.

The FPZ in ductile fracture can be identified with the strain-softening
region where the voids are growing faster than can be compensated by strain
hardening. The Gurson (1977) model, as modified by Tvergaard (1982), is
accurate for the initial stages in strain softening but does not predict the final
coalescence of voids by cavitation or shear localization. Without an accurate
prediction for the final coalescence of the voids, which controls the specific
fracture energy, R,, it is difficult to model ductile fracture in conditions of
varying constraint. Deep side-grooves have a dominant effect on the degree of
constraint and it is not unreasonable to assume that under these conditions that the
deformation within the FPZ is one of uniaxial strain despite the specimen
geometry. With the double cantilever beam (DCB) and compact tension (CT)
geometries, the deep side grooves have another benefit in that they allow an
approximate analysis using the theory for beams on elasto-plastic foundation.
Hence in this paper the effect of size on the fracture work R and the Jy-curve is
examined. Such an analysis is not suggested for analysis of practical problems,
but is used here simply to discuss the mechanics of ductile fracture.

2. Modelling ductile fracture in DCB and CT specimens with deep side
grooves

Foote and Buckwald (1985) have shown that the Gross and Srawley (1966)
expression for the elastic stress intensity factor, K, for a DCB specimen is
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accurate to within 0.3% for a specimen whose crack length to beam height ratio
a/H is as small as 0.3. Rewriting the Gross and Srawley expression in terms of
the energy release rate, G, gives approximately

2
1. 1.374(§)
a

12P%a?

B*H? ' @

The first term in Eq. 2 comes from the strain energy stored in bending due
bending. The second comes from both the shear strain energy and rotation of the
beam at the tip of the crack. Using the expression for the shear deflection of a
beam (Gere and Timoshenko, 1991), the contributions from shear deformation is
0.542(H/a)* (taking Poisson's ratio, v=0.3), thus the major contribution comes from
the rotation at the crack tip. If the beam has side grooves, the effect of rotation will
be enhanced and therefore it is suggested that even CT specimens, provided that
they have deep side grooves, can be analysed as beams on elasto-plastic
foundations; the plastic deformation in the arms is modelled by the usual engineers’
theory of bending. During propagatiori there is elastic unloading behind the crack
tip which makes the load-point deflection for a crack that has propagated to a
certain crack length, a, larger than the deflection for a beam with an initial crack
length equal to a.

The constraint on plastic deformation assumed for the deep side notched
specimens only allows plastic deformation because of the formation of voids.
Hence the maximum stress in the FPZ occurs at plastic strains of the order of the
yield strain. For a FPZ with an initial void volume fraction of 0.005, yield strain
€,=0.002, and strain hardening exponent n=0.1, typical of a pressure vessel steel
such as ASTM A533B, the maximum stress is of the order of four times the yield
strength, o, (Xia and Shih, 1995b). The stress falls only gently after the maximum
stress is reached and it is assumed that in the FPZ that the stress is elastic up to the
maximum stress, Co,, and is then constant until the FPZ is completely fractured
(after a displacement, &,). Under these assumptions, the specific essential work for
an infinitesimally thin FPZ is, R =Co,6;.

Two type of models have been employed to model the stress in the
ligament.

2.1 SPECIMENS WITH LARGE LIGAMENTS

For specimens with large ligaments, either absolute or compared with the beam
height, H, the specimen has been analyzed as a beam with a constant stress, Co,,
in a FPZ at the tip of the crack outside of which the beam rests on an elastic
foundation. The stiffness of the elastic foundation can be calculated from the B.
assumption that the straining is uniaxial so that the stiffness, k, of the "foundation"
is given by
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k - (I—V)E _B_!._ , (3)
(1+v)(1-2v)\ H

n

where B, is the width of the side grooved section, and H, is the height of the
grooves (see Fig.1a). The most important factor determining the behaviour of the

specimens is their scale relative to the characteristic length, 1, of the material
which is defined by

ly = (ER,)/o}. @

A typical distribution of stress along the ligament of a DCB specimen with side
grooves that reduce the specimen width to 25% is shown in Fig. la for a non-
dimensional beam and groove height of H=0.1 and H,=0.002 respectively (this
height typically corresponds to 0.5mm for a ductile metal). The material is assumed
to deform according to the true stress strain relationship
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Figure 1. Stress distribution in the ligament of (a) 2 DCB specimen, H=0.1, W/H=6,
(b) a CT specimen, H=0.1, W/H=1.667.
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In Fig. 1, the strain hardening exponent, n, is assumed to be 0.1 and the strain at
yield e, = 0.002. The arms of the specimen described in Fig. 1 (a), yield before the
initiation of a ductile tear the moment at the crack tip being 1.72 times the yield
moment at initiation rising to a maximum of 1.77 times before dropping to 0.846
when a/W = 0.9. For short crack lengths the stress distribution does not vary
significantly, but as the crack approaches the back face of the specimen. The stress
and displacement outside of the FPZ becomes linear and the compressive stresses
become high and yielding must occur. The load-deflection curves for specimens
with long ligaments are not significantly affected by the constraint factor C.

o

i

©®)

q
n

2.2 SPECIMENS WITH SMALL LIGAMENTS

For specimens that would yield in compression at the back face, it is assumed that
the strain in the ligament outside of the FPZ is a linear function of its position.
Yielding in compression is very sensitive to the degree of constraint, because
uniaxial straining with no volume change is assumed. Therefore it has been
assumed, rather arbitrarily, that in the compression region of the ligament that

c = —Coo(-ai) for 6 <&,
0
®
6 n
o - —Coo(——) for & > 6,,
8,

where &, = Co B,/k is the elastic stretch in the FPZ. With this assumption there is
no yielding in compression until the crack approaches the back face of the
specimen when the strain distribution becomes linear. The load for a particular
crack length can be found from consideration of the equilibrium of the specimen.
The stress distribution along the ligament of a CT specimen (side-grooved to 25%)
that yields along the back face is shown in Fig. 1b. Here strictly unloading in the
zone that has yielded in compression should be considered, though unloading in the
arms does significantly affect the J-integral, unloading in the compression zone is
less important and has been neglected. Here the load is very obviously dominated
by the constraint factor C. Since no experiments have been carried out on CT
specimens with deep side grooves the validity of this modelling has not been
proved.
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Figure 2. Load deflection curves for two DCB a-brass specimens
(6,=230MPa, ¢,=0.00217, n=0.33, v = 0.33, B,/B = 0.063)

3. Comparison of experimental results with model

To date experiments have only been made on DCB specimens with very large
ligaments. The load-deflection curves for two «-Brass specimens with initial crack
lengths of 90 and 130 mm are shown in Fig. 2. The arms in both of these specimens
yield before a ductile tear is initiated. The Young's modulus, and plastic behaviour
of this material was found from independent tensile tests. The constraint factor C
was assumed to be 4 and the critical crack opening displacement &;=0.0815 mm
(equivalent to specific fracture energy R, = 75 kJ/m?) was found by determining the
best fit to the results obtained for the shorter of the two crack lengths. The loads
agree extremely well, whereas the deflections are slightly underestimated by the
model. This under estimation may be because the effective height of the groove
should be slightly greater than the height of the machined groove.

4, Fracture work and the Jy-curve

Crack propagation in the DCB specimen is almost perfectly self-similar with the
FPZ translating ahead of the crack tip with only insignificant changes in its shape
caused by a change in the ratio of the bending moment to shear force at the crack
tip. However, in the CT geometry or when the crack in a DCB specimen
approaches the back face, there can be significant changes in the size of the FPZ.
When the crack propagation is steady-state, the fracture work, R (defined as the
work performed within the FPZ to increase the crack by a unit area) is identically
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equal to the specific essential work, R,, and the value of the J-integral at initiation,
J,., is identical to R,. Under such conditions the fracture work, R=R,, is constant
during crack propagation. However, if the crack propagation is not steady-state, the
work of fracture R+R,. If the concept of a finite width FPZ is employed, the work
already performed on the pupative FPZ as it enters the FPZ must be considered as
well as the work performed within it. During a crack extension of da, the FPZ
propagates by (da+da,), where a, is the length of the FPZ. The work already
performed per unit length on this new portion of the FPZ is 0.5Co,8,, where
8,=Co Bk is the elastic stretch in the FPZ. Thus the work of fracture is given by

 paea ) Coyd, da,
R-fa vCooa(ﬁ-éo?dx+ > [LE

S.a
=R|':+ Coo%{f:'“r(ﬁ-ﬁo)dx+ ;p}

where R:,=Co°(5f - 8,/2). This definition of the essential work of fracture, for a
finite width FPZ, is slightly different to R, to insure that during steady-state crack
growth JIC=R:,. When the FPZ approaches the back face of the specimen and enters
material that has already been strained in compression the work already performed
in the pupative FPZ should be included, but such large crack growths are probably
not important. The plastic component of the J-integral for deep side grooved CT
specimens can be calculated from the n-factor given by Merkle and Corten (1974)
using the correction for crack growth given by Emnst et al. (1981). The plastic
component of the J-integral for the DCB specimen can also be analyzed using an
n,-factor = 1.08 based on the crack length, a, rather than the ligament so that

N, ra
T, - I?f& fo » PdA, ®
where A, is the plastic load-line deflection (Cotterell et al. 1995). The elastic
component, J,, can be determined from the elastic compliance of the specimens for
both CT and DCB specimens.

The FPZ size, the work of fracture, R, and J; are shown for two DCB
specimens ( with side grooves that reduce the thickness to 25%) of non-
dimensional height (H = H/l ;) of 0.1 and 0.2 are shown in Fig. 3. It can be seen
that the apparent crack growth resistance, implied by the J;-curves, increases with
crack extension and depends upon the size of the specimen whereas the essential
fracture work, R, remains constant. As J; reaches a maximum the model of section
2.1 ceases to be appropriate.
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Unloading in the arms has a large effect on the deflection and J as can be seen

from Fig. 4 where the load deflection curve obtained during crack propagation is
compared with the locus of the initiation load-deflection for different crack lengths
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Figure 4. Load-deflection curve for DCB specimen (B=0.1, W/H=6, B,/B=0.25, a,/W=0.5)
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The results for the CT geometry are shown in Fig. 5 for specimens whose
non-dimensional heights H are 0.1 and 1. Here the larger specimen has been
analyzed using section 2.1, but the smaller specimen has to be analyzed according
to section 2.2. The results for H=1.0 are very similar to those for the DCB
specimen, but for H=0.1 the size of the FPZ decreases significantly with crack
growth causing the essential fracture work, R, to be less than R, and J; to be greater
than R,. In the smaller specimen J; only decreases slightly with crack growth

because the stress distribution is very similar to that assumed by Merkle and Corten
(1974) in their estimation of the n-factor..
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Figure 5. Fracture work in CT specimens B,/B=.25, (a) H=1.0, a/W=0.3; (b) H=0.1, a/W=0.4.

5. Conclusions

The ductile fracture of DCB and CT specimeéns, with deep side grooves, can be
modelled approximately by the use of the engineers' theory of bending treating the
side-grooved section as a foundation to the beam. This model enables the
relationship between the essential work of fracture within the FPZ and the Jz-curve
to be examined. It has been assumed that the deep-side-grooves dominate the
constraint at the crack tip so that the FPZ deforms uniaxially. With this assumption,
the stress-displacement relationship within the FPZ is unique and hence the specific
essential energy R, is a constant. Except at initiation most of the crack growth
resistance implied by the Jz-curve includes large amounts of work performed
outside of the FPZ which depend upon the size and geometry of the specimen. This
conclusion is not new, but here the essential fracture work performed within the
FPZ has been clearly identified. In fracture mechanics we should be seeking
material constants, the Jz-curve is not a material constant. While the work of
fracture in the FPZ depends upon constraint, it is a better candidate for a fracture
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parameter than the J integral. However, in very small specimens the work of
fracture in the FPZ need not be identical to the specific essential work R,. The most
fundamental parameter is the stress-displacement relationship within the FPZ.
However, at the moment there is no simple model that gives accurately the
complete stress-displacement curve.
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1. Introduction

The failure analysis of thermally loaded two-phase compounds, in material
science usually denoted as bimaterials, requires the determination of stress
states due to applied nonstationary temperature fields as well as the considera-
tion of the mismatch of the mechanical and thermal material constants. The
structural performance of material compounds is essentially affected by exist-
ing defects of various kinds. Regarding the formation of yielding zones in
ductile materials, which particularly arise in the vicinity of defects, the utiliza-
tion of elastic-plastic constitutive equations is necessary. Various publications
address the problem of mechanically strained interface cracks in elastic-plastic
bimaterials. For the case of small scale yielding (SSY), HRR-like stress field
structures have been found [1, 2]. Proceeding contributions based on the de-
formation theory have provided asymptotic stress fields, where the leading
term of those asymptotic stress fields is parameterized by the J-integral {3, 4].
From the mechanical point of view, an energy balance in the crack tip area
identifies the J-integral as a crack driving force [5, 6]. In this paper, the quanti-
tative characterization of different self-stress states in the vicinity of an interfa-
cial crack tip is performed by using the J-integral, where the influence of tem-
perature gradients close to the interface crack tip is of most interest.
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2. Basic Equations

The calculation of stress states in thermally loaded bimaterials is based on a so-
called sequentially coupled solution of the heat transfer and thermal stress ini-
tial boundary value problem. Firstly, the heat transfer problem is mathemati-
cally described by Fourier’s law as follows ‘

V{4V (3] = 0+ e, T )
where Q(x)) denotes the given distribution of heat sources, A the coefficient of
thermal conductivity, p the material density and c, the specific heat coefficient.
The transient response analysis of the heat transfer problem yields the inhomo-
geneous, time-dependent temperature field T(x, #). Secondly, the analysis of the
thermally induced self-stress state in the bimaterial is performed based on the
incremental theory of plasticity by using the subsequent constitutive material
equation

1+v 1-2v
dey =——ds, +— 8,do, +6,adl; (0,<0,) 2
dgij=1+Tvdsij+l_2v5ide'u+§- doc'; s; +6,0dT; (0,20,) &)
PY e

where de, defines the incremental strain tensor, s, the deviatoric part of the
stress tensor, G, the trace of the stress tensor, O, the effective stress, o, the yield
stress, E Young’s modulus, v Poisson’s ratio, E, the plastic tangential modulus,
o the thermal expansion coefficient and 4T the incremental temperature
change. /

c, A

E.
Syt Er: Tangential modulus
E E: Young’s modulus
—

Figure 1. Bilinear stress-strain relation

For this material law, von Mises’s yield condition, an associated flow rule and
isotropic hardening is assumed. Figure 1 shows the applied bilinear relation
between the effective stress ¢, and the effective strain €,.
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The solution of the initial boundary value problem is performed by utilizing the
finite element software system SOLVIA, where most of the included routines
needed for the present problem refer to a publication by Snyder and Bathe [7].

3. J-integral
3.1 DEFINITION

The quantitative characterization of different self-stress states is performed by
the J-integral, where the J-integral values are obtained from corresponding fi-
nite element calculations of the associated stress and deformation fields.

(I
Iy

R
Q| R Material 1
Interface crack [ Iy / L\ x

I; € Material 2
Q,

Figure 2. Contour- and domain integration

The basic approach for the vectorial J, -integral to be introduced in order to
describe a virtual crack extension in the x,-direction reads

L]

J, =lim [b, n,dr @
rt

where b, is Eshelby’s energy momentum tensor and #, is the unit vector perpen-
dicular to the line element dI” of the contour I'. According to the references
[5, 6], Eshelby’s energy momentum tensor b, is given by

by=W8, —ou,; W=[o,dey; dej=de,-aTs,) )
where W denotes the strain energy density and u, the displacement vector. The
projection of the J-vector on the direction of the virtual crack extension m,

yields the magnitude of Rice’s J-integral, namely

J=mJ,. (6)
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3.2. EQUIVALENT DOMAIN INTEGRAL REPRESENTATION

The evaluation of the J-integral is performed by applying the equivalent do-
main integral method (EDI) [8]. By the help of the weight function s(x)
Rkl )
R
and invoking Gauss’s divergence theorem it is possible to convert the contour
integral (4) into the following domain- and contour integral [8]:
Jo= ~ [(sby),d2 + [sAbndl ®
Q,ul, rur, )
By restricting to monotonic applied loads and by neglecting volume forces the
final expression ‘
Jo= - “Ws,,‘—(s,.ju,.,,t 8;=C O Ty s]dﬂ + J‘sAbb.nde ®
,u8, nur, .
for the the J -integral is gained.

The remaining contour integral in formula (9), in which, as should be re-
minded, the energy momentum tensor is discontinuous along the crack I', and
the interface T',, vanishes, if the crack propagates along the ligament I, as well
as if no loads are subjected to the crack surfaces I', [9]. The calculation of the
domain integral is carried out in the curvilinear coordinates of the applied
isoparametric finite elements and by using the Gauss-Legendre quadrature for-
mula.

4. Application
4.1. THERMOMECHANICALLY LOADED INTERFACE CRACK

The bimaterial sheet damaged by an interface crack and depicted in Fig. 3 is
considered. In addition, a heat source Q of constant power supply Q, [J /s m3]

after initiation at time ¢ = O and located in a small circular domain at the given
position (r,, 8,) in one of the respective bimaterial components is assumed to

act.
For completeness of the thermal boundary value problem, at the external

boundary a convective heat-transfer is defined, according to
nT,=P{r -1} (xeT) (10)
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where T, denotes the environmental temperature and B is the heat convection
coefficient. On the crack surfaces the so-called natural boundary condition

nT, =0, (x; ell) (11)
holds true; that means the crack surfaces behave like thermal insulators. At init-
ial time ¢ = 0 a constant temperature T(x,, ¢ = 0) = T, is prescribed.

Material 1 Axl /

xternal boundary
r
| Crack tip /

W surroundings
Interface crac Xy
—

Heat source Q

Y

Mater/ial /2— %
100 mm

[\
Figure 3. Discretized bimaterial structure

The external boundary of the bimaterial and the crack surfaces are assumed to
remain stress-free, that means
on, =0; (x,. EFUFl)- (12)

yJ
Further at the interface the continuity conditions for the traction vector and the
displacement vector, respectively
1 . / | . i,
oin,=oyn; uw =u'; (xel,) (13)
has to be fulfilled. Moreover, plane stress state calculations have been carried
out for zero initial stresses. Table 1 assembles the used material constants for

the selected bimaterial.

TABLE 1. Material constants

Material A c, p B E v o c, E,
[W/Km] | [VkgK] | (kg/m’] | [W/Km®] | [MPa] | [1] | [/K] |[MPa]| [MPa]

1 113 376 8440 200 9000 }0.35] 2.1-10° | 50 300
2 15 502 7800 200 [210000{0.29]1.19-10°| 100 7000




120 K.P. HERRMANN AND T. HAUCK
4.2. RESULTS

For the thermal stress analysis under investigation, the heat source Q is as-
sumed to be situated at various positions of a circle centered in the inter-
face crack tip and with the coordinates (r, = 25 mm, -90°< 9, < 90%). The fan
90°< 9, < 270" was excluded from the analysis due to a possible interpenetrat-
ion of the crack surfaces. Figure 4 shows the almost stationary temperature
distribution in the bimaterial for the chosen heat source positions (r, = 25 mm,
9,=445") at the time ¢ = 600 s. For the stationary case, the thermal energy
supplied by the source is removed from the bimaterial by the convective heat
flux along the external boundary. As thermally isolated crack surfaces are pre-
scribed, the heat flux within the bimaterial is being redirected by the crack and
accounts for the heat flux vector square root singularity at the interface crack
tip [10].

o D O

9, =-45", r,=25 mm ¥, =+45", r;=25 mm

Figure 4. Bimaterial-T(x, ¢ = 600 s) distribution
(lateral length = 100 mm)

The most important features of the analysis of the interface crack are the dis-
tributions of the temperature and of the stress tensor components, respectively,
nearby the crack tip. The magnitudes and the directions of the temperature
gradients strongly depend on the 9, -coordinate of the heat source location. The
temperature as well as the temperature gradients take maximum values for
ﬁg < 0° due to the smaller heat conduction coefficient A, of the material 2, cf.
Fig 5.
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o

B, =-45", r,= 25 mm 9, =+45", r,=25 mm

Figure 5. Bimaterial-T(x, ¢ = 600 s) distribution
at the crack tip surroundings (radius = 10 mm)

Figures 6-8 depict the distribution of the stress tensor components related to the
previously presented temperature distribution. It is concluded from the struc-
ture of the stress field contour plots that the direction of the temperature gra-
dients plays a dominant role for the stress distribution. The near-tip singular
stress field is superimposed on nonsingular stresses due to the thermal mis-
match along the interface, which is especially visible for the case 0,<0°. It is
noteworthy that in this part of the bimaterial the stress fields are most influ-
enced by the position of the heat source, because the source produces maxi-
mum values of the temperature gradients for 9, < 0°.

20, 032

N

MIN -3%. 22

9,=-45",r,=25mm o, /MPa| 9O,= +45°, r,=25 mm

o

Figure 6. Bimaterial-c (x, ¢ = 600 s) distribution
at the crack tip surroundings (radius = 10 mm)
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MIN TR

PLEd

9,= -45°,r,=25mm G, / MPa

e

9, = +45°, r,=25 mm c,,/ MPa

Figure 7. Bimaterial-G,,(x, ¢ = 600 s) distribution
at the crack tip surroundings (radius = 10 mm)

I

9,= -45°, r,=25 mm o,/ MPa

@

o,/ MPa

9, =+45", r,=25 mm

Figure 8. Bimaterial-G ,(x, = 600 s) distribution
at the crack tip surroundings (radius = 10 mm)

The worst-case loading of the bimaterial can only be determined by calculating
fracture mechanical parameters. In this contribution, the assessment of the self-
stress states in the cracked bimaterial is realized by calculating Rice’s J-inte-
gral. A special postprocessor adopting the presented theory of section 3 was
developed in the Laboratorium fiir Technische Mechanik. The numerical inte-
gration was conducted for various circular domains centered at the crack tip
(2mm £ R <10 mm) by using the results of the finite element calculations.
Figure 9 shows the J-Integral in dependence on the radius R of the integration
domain for the heat source location (r, = 25 mm, 8, = -30°).
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Figure 9. J =J(¢, 9,=-30", R)

As can be recognized from the diagram given above the values of the J-integral
do not depend on the chosen domain of integration. Therefore, the J-integral is
appropriate for a further analysis.

0.40
0.35 .
0.30 %/
E 0.25 -9
> 020 A—-60
=~ 015 —8—-30
o
0.10 | ©—+30
0.05 —E—+90
0.00

30 60 90 120 150 180 210 240 270 300
o tls
Figure 10. J = J(t, B ))

Figure 10 depicts the transient behaviour of the J-integral versus varying heat
source positions U,. For the cases of heat source positions 9, < 0°, the maxi-
mum J-values arise before the stationary state is reached. On the other hand, for
the cases 9,>0°, the J-integral depends on time in an approximately linear
manner and, in addition, almost does not change for heat source coordinate
variations 0° <9, <90°. Assessing the loading cases under investigation, the
worst-case heat source position 8, =-30° can be identified.
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5. Conclusion

In this contribution the investigation of a thermally self-stressed elastoplastic
bimaterial damaged by interface cracks has been performed. The calculation of
the corresponding self-stress states is based on the so-called sequentially cou-
pled solution of the heat transfer and thermal stress initial boundary value
problem. The thermal interface crack problem was solved by applying the finite
element method. For this investigation, the influence of temperature gradients
or heat fluxes, respectively, on the self-stress state was of most interest. It was
recognized that the self-stress state at the interface crack tip is influenced by
the position of the heat source and, in addition, apart from the thermomechani-
cal material constants, by the heat conduction properties of the bimaterial com-
ponents. The usage of the J-integral renders possibly the assessment of ther-
mally induced self-stress states at interface crack tips in elastoplastic bima-
terials, from which worst case conclusions can be obtained.
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CONDITIONS OF CRACK ARREST BY INTERFACES
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Abstract : When a crack in a layer reaches an interface with another layer, it may be
arrested or at least retarded by the phenomenon of debonding of the interface and
reinitiation of a new crack in the second layer. A Shear Lag analysis associated to
Damage Mechanics gives closed form solutions for the crack arrest conditions or the
number of cycles of fatigue to crack initiation which determines the retardation, as
functions of the design parameters of multimaterials.

1. Introduction

The dream of any good designer of structures is to avoid cracks or to stop
their growth if they may be present or at least to reduce the crack growth
rate as much as possible.

An old drastic repair of a cracked structure consists in drilling a
small hole at the crack tip to remove the process zone and to oblige the
crack to undergo a period of reinitation before it can continue to grow. In
aeronautics, for example, riveted stiffeners on panels give a much bigger
retardation effect on fatigue crack growth than built-in stiffeners because
the crack in the riveted panel must reinitiate a new crack in the stiffener to
continue to grow, which is not the case in the built-in stiffener where the
crack continues to grow with a small retardation only due to the bigger
thickness (Lemaitre 1974).

In multimaterials, the interface may play the same role provided it is
not too strong so that the crack cannot pass through instantaneously and
not too weak to avoid a complete debonding of the interface. Stress
solutions for cracks terminating at interfaces have been obtained in the
prior work of Williams (Zak and Williams 1963), then by Erdogan
(Erdogan and Biricikoglu 1973) and more recently by Ballarini and Huo
(1991). The conditions of bifurcation of cracks in interfaces of
multilayered materials have been much studied (He and Hutchinson 1989)
(Jensen, Hutchinson and Kyung-Suk Kim, 1990) but not their reinitiation
in the following layer probably because the location and the state of stress
governing the crack reinitiation are difficult to analyze (Suo and
Hutchinson 1990). In fact, a simple Shear Lag analysis associated to
Damage Mechanics gives enough information to obtain a closed form
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solution of the loading or the number of cycles of fatigue which induces a
crack reinitiation in the second layer of a two layered material having a
crack loaded in mode I in the first layer. From these approximate solutions
it is possible to deduce qualitative results regarding the influence of design
parameters such as the geometry, the loading, the material properties and
the quality of the interface on the crack reinitiation. It may help to optimize
multimaterials against fracture.

2. Mechanism

Consider the two layered specimen of figure 1 where the layer A has a
crack perpendicular to the interface I and is loaded in mode I by a remote
stress ©_. Several sets of experiments have shown that when o
increases monotonically or when it varies periodically as in a fatigue
process, there is first a debonding of the interface over a length of the
order of magnitude of the thickness of the layer A and then a reinitiation of
the crack in the second layer B may occur or not depending upon the
geometry and the material properties of the layers and the interface
(Vidonne 1995).

2ha

-

2hs

b fasanuame

Fig. 1 Reinitiation of a crack in a two layered specimen
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The overload or the number of cycles of fatigue necessary to
reinitiate the crack act as retardation effects in the failure process of the
multimaterial and if no reinitiation occurs the interface acts as a crack
arrestor. Let us see how the design parameters govern this phenomenon.

3. Analysis of the Debonding of the Interface

Suppose that the crack in the layer A has reached the interface. We neglect
any bending effect and consider that the two layers are loaded in pure
tension in order to apply the pure Shear Lag analysis to find the state of
stress in the interface (Volkersen 1938). Using fracture mechanics to
define the debonding length as in (Hutchinson and Suo 1992) may also be
used but it does not help to define the conditions of crack reinitiation in the
layer B.

The two layers are elastic with Young's moduli E, and Eg, the
interface considered has zero thickness, has a shear modulus G; and a
debond shear stress .. The equilibrium equations of the multimaterial and
of each layer give rise to the following differential equation for the shear
stress in the interface o], (Lemaitre 1992).

2 .1
d 6212 _;‘2612 =0
dx;
% B I
with x:( GE. ) g _EahatEghy o dop o
2h,h,E.E, )~ =  h,+h, dx,  2h,
For the boundary conditions considered :
x,=0 — o] =0, h, +hy
hB
X, = =0} =0..

The solution is : o), =2h,Ac_ exp(—Ax,).

An approximation for the debonding zone is the length 1, over which the
calculated stress o, is larger than the debond critical value <.

Writing 612(xl=lo) =1T. gives by =;Ln(«ff %u,)

2h, V2 ¢

%

With ,'ll - EA.—Q—LE: .
hB EAEB

Several qualitative conclusions may be drawn from this equation :

- There is no debonding if :
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V26, <1 o 292ha Gi EghatBghy
Te w2 h, E,E; h,+h,

This is a condition for crack arrest but with weak accuracy due to the
approximation of the Shear Lag theory which gives a finite stress at

x, =0.

- For classical values of engineering parameters such as
6./tc,h,/hg,E,/E5,G;/E,, the debonding length is of the order of
magnitude of a few thicknesses of the cracked layer.
0< b <10
2h

A

- The debonding length decreases if h,/hy decreases, or if o, /T¢
decreases, but it is not much influenced by the elasticity modulus.

These results have been checked by a Finite Element Analysis (Vidonne
1995).

4. Analysis of the Crack Reinitiation Conditions

The same Shear Lag analysis may be applied to find the state of stress in
the layer B after a debonding of length 1. The same equations apply with
a translation of 1, (or - 1) of the x, axis.

- for 0 < x, <1, the layer B is subjected to a pure tension :
h, +h
oy =0, A —F
hB
- for x, 21, the layer B is subjected to a shear stress equal, by continuity,
at its upper surface x, =0, to the shear stress in the interface :

0'?2 = 0':2 =2h,Ao.. exp(-—)»[xl - ID])

and a tension stress, which is the solution of
dop __op

dx, 2hg

with the boundary condition o}y, ., =0..:
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h
ol = o'ml:l + h—’“—exp(—-?»[x1 -1, ])jl

B

Damage Mechanics now provides the concept of the Damage Equivalent
Stress which governs the phenomenon of crack initiation (Lemaitre 1992).
It is deduced from the Strain Energy Density Release Rate which is the
- associated variable to the Damage Variable D defined as the surface density
of microcracks or microcavities in a Representative Volume Element :

- %
c —vcequ
where G, is the von Mises Equivalent stress :

(3 oD % D_5 —6.8
6, =|=0;0; | . o) =0,-0y

5 On =70

ij?

and R, the triaxiality function :

2

R, = 2(1+v)+3(1—2v)(g" J

, ==
3 e

Vv being the Poisson's ratio.

It is straightforward to calculate the Damage Equivalent Stress at the upper
surface of the layer B as a function of x,, h, /hy and the group parameter
i, defined by
My =

EAEB
Figure 2 shows, as an example, that 6" is maximum at the debond tip and
its expression for x, =1; is :
PN

N 2 % ,
- =([1+2_A] +6h—AH§J %[1+VB]+%[1—2VB] 1+6la__ K

o B hy hy (1_'_2&)‘
i hB J

This proves that the crack reinitiation in the layer B will occur at the point
(x2 =O’XI=ID)‘ .

oo
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"Fig. 2 Damage equivalent stress evolution (L being a reference length)

Another interesting result shown in figure 3 is that c", despite its nice
formula, is quasilinear with h, /h; and does not depend very much upon
the material parameter 1, at least in the range of their engineering design
values. The simple formula

S 1+l Gim R, =1
. hy
is a good approximation and in fact a lower bound by comparison with a

Finite Element Analysis (Vidonne 1995).

L
o] —O— =
] ] u, = 0.05
/:4’ —Y “H =O.1
’- . 2
5 ,,/l —_ 'p_ =0_2
227 . 2
. 4 :1,, p2=0.3
S L’ —t+- -y = 0.4
b 3 K2 ' o
- 3 7 -0--p =0.
| &
P4
2 a4
1
0
0 1 2 3 4 5
ha /hb

Fig. 3 Damage equivalent stress function of the design parameters
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Having 6", damage mechanics provides conditions for crack reinitiation.
Assuming the material of the layer B to be quasi-brittle, that is elastic at the
macro-scale but elasto-plastic and damageable at the micro-scale, a two
scales micromechanics analysis of an elasto-plastic and damageable
inclusion embedded in an elastic matrix gives the following kinetic law of
evolution of the isotropic damage D (Lemaitre 1992) :

2

2
D=5t [-23-(1+v)+3(1—2v)(%] }éeq if e,2¢,

2ES }

D =D, £1—mesocrack initiation

where the accumulated strain rate £, = (%eﬁef,’ )% may be replaced by its
value as a function of the von Mises stress rate through the law of
elasticity:
21+v,.
=21,

o, is the fatigue limit of the material, €, a damage threshold taken here as
equal to zero, and S a damage strength of the material. Then,

D= %%QE(H v)+3(1- 2v)(%*i) ]|<'seq I

Using the rough approximation ¢" = 0';(1 +h, /hB) which corresponds to

a one dimensional state of meso stress at the tip of the debonding x, =1
(but a three dimensional state at the microscale) :

G =0,

2-\
ok (1+vg)| 2 1 Gi(HgA) h
D=—8\_B/I=() (1-2v.)————PBZ [1+—2 |l&_|

This formula shows that a low damage rate dD/do., is obtained if :

- the thickness of the uncracked layers hy is large in comparison to the
thickness h, of the cracked layer (this is the case of a coated system),

- the elasticity modulus E, and the damage strength Sy of the uncracked
layer material are large but if its fatigue limit G5 is low.
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The conditions of a crack reinitiation are derived from the integration of
this damage rate equation for any history of loading &_(t).

* Case of static loading

An obvious integration gives the critical remote stress 6¢ corresponding to
the mesocrack initiation D = D.. as the solution of :

[~ 2

3

op(1+vs)| 2 1 °- (HE&) h

—BL Bl (14vp)os +—(1-2vg)— 2| 1+ A)=DC
3E3S; |3 9 O B

with the same qualitative conclusions to maximize o€ as to minimize the
damage rate dD/do”..

* Case of fatigue loading

Consider a periodic loading defined by 0<o, <0y, which induces
fatigue of the layer B after debonding of the interface. From the damage
rate equation, the damage per cycle is :

2
h
o’ (1+—A)
2 oM
3D _ op(l+Vs) 2 (14 v,)0 oy + (1= 2vg)—— 2[4 e
8N 3ES, |3 9 ) )

and the number of cycles N, to reach a crack reinitiation corresponding to
D=D.is

-1

2
. ciM(H%‘l)
(1=2vp)— fe )

3E2S,.D 2
BB C -’:(1+VB)G&M+-9— ;

c?B(1+vB)(l+—E—AJ : on

B

Ng =

This result where the number of cycles to crack reinitiation is a cubic
inverse function of the stress amplitude may be not quantitatively realistic
but it shows the main trends of the influence of the design parameters to

obtain a crack retardation defined by N, as large as possible.
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5. Conclusion

The dream of the good designer of multimaterials relating to crack arrest or
crack growth retardation is alive if :

- the possible cracked layer has a small thickness in comparison to its
substrate,

- the elasticity modulus and the damage strength of the substrate are large
but its fatigue limit is low,

- the debonding length of the interface which immediately follows the
crack reaching the interface is of the order of magnitude of several
thicknesses of the crack layer, it decreases if the debonding shear stress
increases but is not much influenced by the modulus of elasticity of the

layers and by the shear modulus groups as G,E_/E ,E;.
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1. Introduction

Asymptotic solutions of the stress and strain fields near the tip of a steadily advancing
crack in an elastic-plastic solid, have been worked out by Slepyan (1976) for Mode 11,
and by Gao and Nemat-Nasser (1983a,b, 1984) for all three fracture modes, as well as
for elastic, power-law hardening (elastic-plastic) material models; see also Nemat-
Nasser and Obata (1990). Adiabatic shearbands in similar model materials have been
examined analytically, mostly as one-dimensional problems; see, for example, Clifton
et al. (1984), Wright and Batra (1985), Wright and Walter (1987), Burns (1990), Walter
(1992), and Olmstead et al. (1994). There are many features in common between a
dynamically growing crack and an advancing adiabatic shearband in an elastic-plastic
solid. Here, some of these are briefly examined, focusing on near-field asymptotic solu-
tions of these problems. Of particular interest is the effect of the assumed constitutive
model on the structure of the asymptotic solutions, especially the nature of the tempera-
ture field. -

It turns out that the near-tip asymptotic solution of a steadily advancing crack or
adiabatic shearband, critically depends on the manner by which the material’s flow
stress may depend on temperature and strain rate. For a perfectly plastic model, the
strain and temperature will be logarithmically singular, as the tip is approached. Similar
results hold when the flow stress is power-law hardening, but assumed to be indepen-
dent of the strain rate and temperature. On the other hand, if the flow stress is assumed
to depend on temperature, all field quantities will be regular near the tip of the crack or
shearband. The situation again changes if the flow stress is assumed to depend on strain
rate by a power law, but remains independent of the temperature and strain. The field
quantities now become power-law singular. If, in addition to the strain-rate
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dependency, the flow stress also depends on temperature, the asymptotic near-tip solu-
tion again becomes regular. The paper therefore demonstrates how important the
assumed constitutive model is in defining the most essential structure of the correspond-

ing solutions.

2. Basic Equations

2.1. FIELD EQUATIONS

As a unified approach, consider the field equations common to both the dynamic crack-
growth and adiabatic shearband problems. These are the equations of linear momentum

and energy, namely,
= _(_l! gI_ = 2 x7P
V.o=p i’ P k V2T +WP, (1,2)
where 6 is the Cauchy stress, p is the mass-density, v is the velocity, T is the tempera-
ture, c is the heat capacity, k is the conductivity constant, and WP stands for the rate of

plastic work per unit current volume. In terms of the plastic strain rate (deviatoric), £,
this work is given by WP = o : €.

2.2. CONSTITUTIVE RELATIONS

For the constitutive relations, we consider an elastic-plastic model, and examine various
flow-stress relations. The plastic strain rate, £, is defined by

e =y0'/21, 3)
where o is the deviatoric stress, and
=@ )%, 'c=(%0’:0')’/2, 4,5)

are the effective plastic strain rate, and the effective stress, respectively. The flow stress
is a relation between T, ¥, and temperature T. We consider five different cases, as fol-

lows:

ko perfect plasticity
koy!/m power-law hardening
=4 kog(T) thermal softening (6)
koy™ strain-rate hardening
ko 7™ g(T) more general .

In this work, we confine attention to a simple case where g is a linear function of tem-
perature,

g=(1-aT). 0]
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This may be viewed as the two leading terms of the Taylor expansion of an exponential
function of temperature, g=exp{—aT}, where a is generally very small, ie,
a=0(10".

n view of (3-5), note that the rate of plastic work becomes

WP=0:88=1720. ®)

3. Steady-State Solution

When the shearband or crack is advancing in the direction of, say, the x;-axis, see Fig-
ure 1, at a constant velocity V, the material time derivative becomes

d __yo
G = v R )
and the basic equations in the moving coordinates (x, y), become
=—pVI¥
V.o=-pV3-, (10
—pcV-g—I=kV2T+‘t'i(. (1)

We now examine the structure of the solutions of these equations with k = 0 (no heat
conduction), in a region 1o < r < Ry close to the tip of the running crack or the shear-
band. We compare these solutions for the five flow stress models of (6).

) '}

X2 y

lt—  { — -l y

X5, X

- Y

Figure 1. The coordinate systems for steadily growing crack or shearband:
x5, X, are the stationary, and x, y are the moving coordinates

3.1. THE 1 £ ko MODEL

Normalize the flow stress using ko as the unit of stress. Then, T = 0(1). From (5,10) it
follows that dv/9x = 0(1/1), so that ¥ = 0(1/r), where r measures length from the tip of
the shearband or the crack. From this and the incompressibility condition, it now fol-
lows (Gao and Nemat-Nasser, 1983a) that the strain and strain rate have the form
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£=0(In[Re/1)), €=0(1/1). (12,13)
From (11) with k = 0, it now is deduced that
T = 0(In(Ro/1)) . (14)

Hence, according to this model, the temperature field must have a logarithmic singular-
ity at the tip of the running crack or shearband. Zehnder and Rosakis (1991) report
sharp variations in the temperature field ahead of a running crack, which seems to sup-
port this result. For this case, Gao and Nemat-Nasser (1983a) provide detailed solutions
for the stress and deformation ficlds based on this model, and give illustrative examples
for all three fracture modes; see also Hori and Nemat-Nasser (1989). For Modes I and
II, they show that the conditions of the non-negative plastic work lead to the existence
of a stress discontinuity at certain angles, % 8", while the strain field remains continu-
ous; for a systematic development of the field variables across a moving discontinuity in
an elastic-plastic material; see Nemat-Nasser and Gao (1988). Recent finite-element
calculations by Varias and Shih (1995) seem to support the existence of the stress

discontinuity.

3.3. Power-law Hardening
Similar results are obtained when a power law work-hardening is assumed. Consider
the stress-strain relation defined by

¥Y=1/E+co(T—10)", (15)

where E is the Young modulus, ¢y and Ty are material constants, and n is the work-
hardening exponent. This is equivalent to the power-law hardening given in (6). Then
the strain, stress, and temperature fields are singular as follows:

v=0(InRo/D))V®-D_ 1=0(®InRy/r))/®-D,
T = 0(In(Ro/1))®+ D/ta=1), (16-18)

These results can be verified starting with the basic field equations and following the
procedure outlined in Gao and Nemat-Nasser (1983b).

3.4 THE 1 < ko g(T) MODEL

When linear temperature softening is assumed, the structure of the solution changes
completely. In this case, the yield condition

1=ko(1-2aT) _ 19

shows that T =0(1) and T = 0(In(R¢/r)) are not consistent. Assuming v = 0(t™), from
(10) and (11), with k = 0, it follows that N = 0. Hence the leading terms in the field
quantities are all functions of the angle 8 only. There is no singular dependence on the
radial distance, r, from the crack or shearband tip in this case.
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3.2 THE 1 < koy™ MODEL

Set v = 0(r™) and note that the field equations then take on the following form:
v=™NV(®), o=1NS(),
1=mNS0), v=rVmI(9),
T = Nm+D/m+1E(@) . (20-25)
From the field equations, it now follows that
N=-m/(1-m), (26)

for this case. Note that, this leads to a weak temperature singularity, when m is small,
ie.,

T=0(1/r™). @7

3.5 THE 1 < ko™ g(T) MODEL

This is the model used by Wright and Walter (1996). Using expressions (20-25) in the
field equations, together with the flow stress, T = ko Y™ g(T), it follows that

N=m/(1+m). (28)

From (28), it is seen that there is no singularity in this case. Thus, this model does not
seem to accord with the temperature field measured by Zehnder and Rosakis (1991) for
the running crack.
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DYNAMICALLY GROWING SHEAR BANDS IN METALS:

A STUDY OF TRANSIENT TEMPERATURE AND
DEFORMATION FIELDS

A. J. ROSAKIS, G. RAVICHANDRAN AND M. ZHOU |
Graduate Aeronautical Laboratories

California Institute of Technology
Pasadena, CA 91125, U.S5.A.

1. Introduction

The objective of our work is (1) to establish the critical conditions
for initiation and growth of shear bands in pre-notched plates subjected
to asymmetric impact loading (dynamic mode II, see Fig. 1); and (2) to
investigate and characterize the transition in the modes of failure when
such plates are subjected to a variety of loading rates (impact velocities).
These failure modes which may feature either dynamic shear band growth,
dynamic crack propagation or both, (see Fig. 1), have been observed in
structural materials such as the high strength steels and heat-resistant ti-
tanium alloy considered in the present work. The approach is to study
both the dynamic mechanical deformations and the processes of heat gen-
eration and thermal softening. This necessitates the simultaneous use of
high speed optical and infrared diagnostics in the experiments. In parallel
to the experimental study, full-scale thermomechanical finite element sim-
ulations are conducted to assist the development of criteria for shear band
initiation and propagation. The calculations make use of constitutive pa-
rameters measured in house through material testing in a variety of strain
rates. Such a combined experimental and numerical approach enables us to
make direct comparisons between measurements and predictions obtained
using various material constitutive and failure models.

2. Results

Materials studied include C-300 (a high strength maraging steel), Ti-
6Al-4V and HY-100. However, C-300 has so far been the primary material
of focus. Experiments and numerical simulations have shown that there
is a strong dependence of temperature increase and speed of shear band
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FIG.1 ASYMMETRIC IMPACT CONFIGURATION AND FAILURE MODES

propagation on loading rate or impact velocity, as demonstrated in the
results summarized below.

2.1 Temperature Rises

Figure 2 shows the measured temperature field generated by a prop-
agating shear band in a C-300 specimen. The 3-D contour plots reveal
the spatial structure of the temperature field generated by the propagating
shear band. The spike in the middle indicates the location of the band.
The width of the zone of intense heating is approximately 200-300 pm.

Figure 3 is a summary of the maximum temperatures observed in-
side propagating shear bands corresponding to different impact velocities
for C-300 and Ti-6Al-4V. Clearly, the maximum temperatures increase
monotonically with the impact velocity for both materials. For C-300, the
highest temperature observed approaches 1700 K (1,427 °C) or 90% of its
melting point. This is the first time that such high shear band tempera-
tures have ever been measured in a laboratory setting. The temperatures
observed here for the C-300 steel are substantially higher than previously
reported by Duffy and Chi (1992) for shear bands in other types of steels.
Also, these temperatures are substantially higher than those predicted by
previous finite element analyses of the shear banding process. The data
in the plot demonstrate a strong dependence of the maximum shear band
temperature on the loading rate or the impact velocity.
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2.2 Shear Band Propagation Speed

The speed of shear band propagation is studied using high speed pho-
tography at framing rates up to 2 x 10° frames/second. Shear band speed
histories during tests at three different impact velocities are shown in Fig
4. The shapes of curves indicate that the shear bands do not propagate
at constant speeds. The speed is lower initially and reaches a maximum
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for each of the impact velocities. The highest speed observed is close to
1,200 ms™~!. This value is the highest shear band speed ever recorded in a
laboratory env1ronment and is approximately 38% of the shear wave speed
of C-300 steel. The dependence of the shear band speed on impact veloc-
ity is shown in Fig. 5. Both the maximum speed and the average speed
measured for each impact velocity are shown. This figure clearly shows a
dramatic increase of shear band speed over a short region of impact ve-
locity. The minimum impact velocity required to initiate a shear band is
approximately 20 ms™!. The shape of the curves indicates a tendency to
saturate by shear band speed with further increase in impact speed. The
strong dependence of shear band speed on impact velocity at lower impact
velocities and the tendency to saturate at higher impact velocities observed
in the experiments have also been predicted by the boundary layer solution
of Gioia and Ortiz (1995).

The results shown in Figs. 3-5 also demonstrate that higher speeds cor-
respond to higher rates of deformation and therefore translate into higher
temperatures within the shear bands.

3. Numerical Simulations

Finite element simulations of the experiments are carried out using
a coupled thermomechanical finite deformation formulation of LeMonds
and Needleman (1986) and Needleman (1989). The effects of strain and
strain rate hardening as well as thermal softening are accounted for. The
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adjustable parameters used in the constitutive law have been obtained
in house by means of extensive constitutive testing using Hopkinson bar
experiments. Full details can be found in Zhou et al. (1996a,b).

3.1 Shear Stress

Figure 6 shows the distributions of shear stress o;2 at two different
times after impact. The impact velocity is 25 ms~!. This is an intermediate
velocity at which both shear banding and fracture are observed in the
experiments, as illustrated in Fig. 1. The existence of a severe shear
stress state (mode-II conditions) is seen. This loading is responsible for the
initiation and propagation of shear bands. The simulations show that the
initiation of the shear band occurs at approximately 22 us. This initiation
time corresponds to the activation of a critical equivalent strain criterion
in Zhou et al (1996b). After the critical strain is reached in a particular
element, the stress-carrying capability of the material is assumed to follow
that of a Newtonian fluid, carrying both a hydrostatic pressure component
and a viscous stress component. The use of such a constitutive relation
for materials inside the shear band is motivated by their ability to sustain
pressure, by the continued dissipation through deformation and frictional
forces and by the high temperature values (90% of the melting point of
C-300 steel) observed in the experiments as discussed above.

The calculated time of initiation is consistent with the initiation time
observed in experiments at this impact velocity by Zhou, Rosakis and
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Ravichandran (1996a). The detachment of the area of intense shear stresses
indicates the propagation of the shear band. As the shear band propagates
the size of the area in front of the band tip, where intensive shear exists,
increases and reaches a maximum at approximately 44-45 us. The size of
this area and the intensity of the shear stress inside it decrease gradually
following this point. By 65 us, the shear mode of loading in the shear band
tip region has ceased to exist, (not shown). As a result, the shear band
decelerates and eventually arrests. The calculated shear stress level in the
area in front of the tip is approximately 1.3 GPa. This is in accord with
the estimate of Mason, Rosakis and Ravichandran (1994) based on CGS
interferometry and a line plastic zone model. The calculation also captures
the initiation of a crack from the tip of the arrested shear band later in the
deformation. For details, see Zhou, Ravichandran and Rosakis (1996b).

1=24 s t=44 ps
G, [MPa]

[mm] [mm]

(a) (b)

FIG. 6 SHEAR STRESS DISTRIBUTIONS DURING SHEAR BAND PROPAGATION

3.2 Shear Band Length Histories

Figure 7 is a summary of the calculated length histories of propagat-
ing shear bands at three impact velocities. The corresponding experimental
results are also shown. Clearly, these two sets of results are in good agree-
ment. The curves show a dramatic increase in the length and speed of shear
band propagation with increasing impact velocity. In addition, the profiles
indicate that the shear band speed is lower initially. It increases and reaches
a maximum at approximately 45 us. This corresponds to the time when
the size of the area of intense shear stress in front of the shear band tip is
maximum. The speed decreases after 45 ys. While the calculated curves
show slightly more variations in band speed over the course of propagation
under each impact velocity, the calculated average speeds match the aver-
age speeds measured in experiments. Also, both the calculated curves and
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the measured curves show the same dependence on impact velocity. Fur-
thermore, the calculated and the measured curves clearly demonstrate that
the duration of shear band propagation is between approximately 20-60 us
after impact, consistent with the experimental observations.
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Figure 8 compares the calculated temperature profiles and the cor-
responding profiles measured in experiments. The profiles correspond to
temperatures in the middle of the shear bands. They are obtained by focus-
ing a detector at a point 3 mm in front of the notch tip before impact. For
details, see Zhou et al. (1996a). During the deformation the shear band
tip propagates toward and passes through the point of observation. The
temperature profiles discussed here are the temperature histories recorded
by that detector. Each profile shown corresponds to a particular impact
velocity. Temperature profiles at two impact velocities (25 ms™! and 30
ms 1) are shown. Both the experimental profiles and the calculated profiles
show relatively slow initial increases followed by quicker increases, consis-
tent with the distribution shown in Fig. 2. There is a good agreement
between the measured and the calculated curves. The curves show higher
temperatures and higher rates of increase for higher impact velocities.

3.4 Shear Band Toughness

There is a need to characterize material resistance to the initiation
and propagation of shear bands. The concept of a shear band toughness
was recently proposed by Grady (1992). A realistic understanding of the
issue calls for the study of the energy required for band initiation and
propagation. The generalized J-integral for dynamic conditions (Moran
and Shih, 1987a,b) is used in the analysis here.

Since the size of the area with large plastic deformation is relatively
small (small scale yielding), J can be regarded as a measure of the driving
force for shear band propagation. In Fig. 9, the instantaneous J value is
plotted as a function of instantaneous shear band speed for the four impact
velocities. Although the data show a certain amount of scatter, a univer-
sal trend of increasing J with increasing shear band speed is observed. It
should be noted that the data forming this universal curve correspond to
four calculations which involve drastically different shear band speed his-
tories. This may point to the existence of a material-dependent relation
between driving force (J) and instantaneous shear band speed. Beyond
a shear band speed of approximately 500 ms~!, the driving force (J) ap-
pears to reach a saturation value equal to approximately 250 KJm~2. The
value of J at initiation (approximately 100 KJm~2) is consistent with that
measured by Mason et al (1994) using CGS interferometry. The results
presented here are only an initial attempt to approach the issue of shear
band toughness by suggesting a possible correlation between a measure of
the driving force and shear band propagation speed. Further analyses are
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certainly needed in order to achieve a better understanding of material
resistance to the initiation and propagation of shear bands.

4. Conclusions

Controlled shear band initiation and propagation are obtained by using
the stress and deformation fields at the tip of an asymmetrically impact-
loaded notch as a trigger. Temperature fields around propagating shear
bands and the speed of shear band propagation are studied experimen-
tally and numerically. Both the experiments and the numerical simulations
demonstrate strong dependences of shear band temperature and speed of
propagation on loading rate or impact velocity. There is a good agree-
ment between the measured and the computed temperature profiles and
shear band speeds. Full details of this work can be found in Zhou et al.
(1996a,b). Related work on double notch C-300 specimens is described in
Zhou et al (1996).
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1. Introduction

Solids deforming at high rates often develop narrow layers of intense shear-
ing. The realistic modeling of these problems requires consideration of large
plastic deformations, rate sensitivity, hardening, heat convection and con-
duction, thermal softening and inertia effects. Fully nonlinear multidimen-
sional solutions to problems of this nature are rare (see Wright and Walter,
1994, for a notable exception). However, the thinness of the shear layers
of interest here makes possible certain approximations in the governing
equations which facilitate the analytical characterization of the flow. The
systematic use of these approximations results in a much simplified set of
boundary layer equations which, in some cases, lend themselves to analyti-
cal treatment.

Gioia and Ortiz (1996) have applied boundary layer theory to the deter-
mination of the two-dimensional structure of dynamic shear bands in ther-
moviscoplastic solids. They specifically consider the case of a plate which
is impacted upon by a flat-ended, rigid projectile, but other geometries can
also be treated within the theory. When the impact velocity is sufficiently
high, a sharp shear band is often observed to propagate deep into the plate
from the edge of the impactor. For instance, Wingrove (1973) studied the
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penetration of 2014-T6 aluminum alloy plates by flat-ended projectiles. In-
tense shear bands were observed to be punched through the thickness of
the target from the corner of the penetrator, causing a plug to form. Shear
bands of a similar character were reported in 70-30 brass by Craig and
Stock (1970) at impact velocities of 300 m/s. The same essential geometry
arises in pre-notched plates dynamically loaded in shear by an impactor
which strikes near the notch (Kalthoff, 1987; Kalthoff and Winkler, 1987;
Mason et al., 1994; Zhou et al., 1996).

In the steady-state case, the boundary layer equations can be reduced
to a system of ordinary differential equations by the introduction of a sim-
ilarity variable. The reduced governing equations can then be integrated
numerically by a standard shooting method, leading to a full characteriza-
tion of the the velocity, stress, temperature and plastic work fields. Interest-
ingly, the existence of steady-state solutions is found to place restrictions
on the material parameters which can be interpreted as stability condi-
tions. Transient solutions can also be formulated by a natural extension of
the similarity methods developed for the steady case. The region where a
critical value of the plastic work is exceeded is found to define a narrow
shear band whose ‘tip’ moves away from the origin at constant speed. This
shear band tip speed is found to be greatly in excess of the impact velocity,
in agreement with the observations of Zhou et al. (1996). The ratio of the
tip speed to the impact velocity rises steeply as a function of the latter at
low impact velocities, also in keeping with the observations of Zhou et al.
(1996), and saturates at high impact velocities.

The results presented in the present paper are extracted from the article
of Gioia and Ortiz (1996). The reader is referred to the original publication
for further details.

2. Boundary layer equations

Under certain conditions, the plastic flow of solids may be expected to be
confined to layers which are thin relative to all other geometrical dimensions
of the problem. The thinness of the layer makes possible certain approxi-
mations in the governing equations which facilitate the characterization of
the flow within the layer. For fluids, the hypothesis that viscosity effects are
significant only in narrow layers, the thicknesses of which approach zero as
the Reynolds number increases to infinity, was advanced by Prandtl (1904),
who also proceeded to compute the simplified boundary layer equations of
motion.

Gioia and Ortiz (1996) have formulated similar approximations for ther-
moviscoplastic solids. As in Prandtl’s original work, the aim is to character-
ize solutions which are rapidly varying in one direction, while being slowly
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varying in the remaining orthogonal directions. As an illustration of how
such deformation fields may arise in solids, consider a plate impacted on
one side by a flat-ended impactor traveling at speed U, Fig. 1a. Let the z,
axis point into the plate from the edge of the impactor, and z; be the or-
thogonal direction within the plane of the plate. Imagine cutting the plate
along the z; axis so that its top and bottom parts can slide freely rela-
tive to each other. If the material is further idealized as rigid-plastic in the
manner outlined in the foregoing, the impacted portion of the plate will
move rigidly with velocity U, Fig. 1b. Evidently, the resulting velocity field
is incompatible along the z; axis. If U is sufficiently large, we expect com-
patibility to be restored through the development of a thin layer of shearing
deformation, or boundary layer, Fig. 1c.

The equations which determine the structure of boundary layers in ther-
moviscoplastic solids can be obtained by recourse to a scaling argument.
The result is (Gioia and Ortiz, 1996):

Brg 4+ 91 D11 + Do re = R 8122 + Pt (1)
P2=0 (2)
V1,1 + V2,2 =0 (3)
19 = |Br0|™ oy g 0" 0 (4)
Wy +) W,y +09 Wy2 = P 812012 (5)
—G2,2 = Tad12 71,2 (6)
Go=0P 0,510, (conduction) (7)
0% (8,; +7, 0,y +7, 02)="T, 312712 (convection) (8)

In accordance with the flow character of the solutions to be sought, an eu-
lerian description of the motion is adopted. Elastic strains are assumed to
be negligible compared to plastic deformations, and the plastic flow to be
volume preserving. Asymptotically, either conduction or convection must
dominate asymptotically to the exclusion of the other. Which mechanism
dominates depends sensitively on material parameters. In the above equa-
tions, v; is the eulerian velocity field; s;; the stress deviator; p the hydro-
static pressure, which we shall take to be positive in tension; w is the plastic
work, which is identified as the sole state variable describing the state of
hardening of the solid; € is the absolute temperature; ¢; the heat flux vec-
tor; ¢ is an exponent characteristic of the variation of the heat capacity
with temperature over the range of interest; [, n and m are the thermal
softening, strain hardening and rate sensitivity exponents, respectively; the
exponent p characterizes the variation of the thermal conductivity with
temperature over the range of interest, and k is a thermal conductivity ex-
ponent. Commas are used to denote partial differentiation. In writing the
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(a)

®

boundary layer /

©

Figure 1. Thought experiment illustrating the formation of an internal boundary layer
in a solid. a) Pre-notched plate impacted by a flat-ended projectile; b) incompatible free
flow obtained by cutting the solid; and ¢) internal boundary layer across which continuity
of velocities is restored.

boundary layer equations, the following normalization is adopted:

- . _ T - Ut A 4 . v
= = t = = =
1 L’ T2 1’ Fk 7!’ 7’ U1 U’ (9)
P R S A B T N R I
2 = U-, —W, - 9 12 = S i p—pUz'
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whence the dimensionless R, P, Tq and 7, numbers arise. In particular, the
dimensionless number
pU?

plays the role of a generalized Reynolds number. Indeed, in the newtonian
case, which is recovered by setting m = 1, n = | = 0, R reduces to UL/v,
where v is the kinematic viscosity. This is the conventional definition of the
Reynolds number for newtonian fluids. The asymptotic regime in which the
boundary layer equations apply is that of very high Reynolds numbers.

3. Steady similarity solutions

Similarity methods (Rosenhead, 1963) constitute a powerful tool for obtain-
ing semi-analytical solutions of the boundary layer equations stated in the
foregoing. An appealing feature of similarity solutions is that their determi-
nation requires the solution of a system of ordinary differential equations.
This system can conveniently be solved by numerical integration, and the
complete two-dimensional fields recovered. Gioia and Ortiz (1996) have
considered free flows in which the pressure is uniform, i.e., pj = 0. Free
flows of the Falkner-Skan type (Falkner and Skan, 1930, 1931), in which
the pressure gradient varies as a power of &1, can be treated similarly.

A semi-infinite plate occupying the half-plane #; > 0 is imparted a
velocity U on the lower half of the boundary, i. e., on &; = 0, £, < 0, Fig. 1.
Gioia and Ortiz (1996) have obtained solutions to the steady boundary layer
equations by introducing the similarity variable

¢ = G257 (12)

The normalized stream function, temperature and plastic work fields are
then expressed as

$=33F¢), 0=%4(0), @b=2&nC), (13)

where the functions f, g and h and the exponents a, b and ¢ are to be
determined. Inserting representation (13) into the boundary layer equations
and balancing out powers of Z;, the following system of ordinary differential
equations is obtained:

ot = Lol i a8
aff' = ’RT(m|f”|+nh+lg>’ (14)
chf' —aft! = Prlf], (15)
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Figure 2. Steady boundary layer in a copper plate impacted by a flat-ended rigid

projectile. Profiles of a) velocity; b) shear stress; c) temperature, convection-dominated
solution (dotted line) and conduction correction (solid line); d) plastic work.

where 7 = |f"|™g'h"™ and (-)' denotes differentiation with respect to . In
the convection-dominated case, the energy equation reduces to

bg'tif' —afg?y’ = T 7|f|, (16)

while the characteristic exponents take the values ¢ = 1/(m+1),b = ¢ = 0.
Consequently, both the temperature and plastic work fields are similar in
this case. By contrast, the shear stress field is not similar in general. The
convection-dominated case can be treated similarly.
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Consider, by way of example, the case of a copper plate which develops
a steady internal boundary layer such as described in the foregoing. Gioia
and Ortiz (1996) employ a fourth-order Runge-Kutta method to integrate
(14) from boundary conditions at { = 0. Integration into the positive and
negative (-directions is performed separately based on assumed boundary
values of f' and f”. Simultaneously, (15) and (16) are integrated by the
forward-Euler method to determine g and h. Since the remote values of
these functions are known, the integration of (15) and (16) can conveniently
be effected from the free flow, i.e. from ¢ = foo towards the origin. The
unknown values f” (Oi) are determined iteratively so as to match the remote
boundary conditions f'(—oc) = 1 and f'(oc0) = 0. Finally, continuity of
tractions at the origin is achieved by iteration on f(0).

The impact velocity U is set at 544 m/s. Lengths are measured in units
of the characteristic dimension L = U/4o = 1.1 mm, which corresponds
to the gage length over which the reference strain rate is attained for the
prescribed impact velocity. We take m = 0.2, » = 0.1 and [ = —0.1 as
representative of the early stages of deformation of copper in which the
material may be expected to behave stably. In addition, we set the Reynolds
number R = pU?/gp = 10, and the dimensionless numbers P = 5, Ty =
0.25, and 73 = 1305. We verify that the Stanton number § = 7, /T3 =
0.000192 is very small.

The profiles of the similarity solution computed by numerical integra-
tion at intervals of A{ = 0.005 are shown in Fig. 2. As expected, the
velocity profile effects a smooth transition from its limiting value of 1 at
large and negative { to its limiting value of 0 at large and positive ¢,
Fig. 2a. The shear stress profile attains a maximum 7 = 1.34 at { = 0,
and decays monotonically but asymmetrically to zero away from the layer,
Fig. 2b. The convection temperature profile, shown as the dotted line in
Fig. 2c, diverges to infinity at { = 0, as expected. However, the conduction
sublayer renders the temperatures bounded everywhere. The thinness of
the conduction sublayer relative to the convection sublayer is particularly
noteworthy. The plastic work distribution also diverges to infinity at { = 0,
Fig. 2d. This may be regarded as an artifact of the steady solution. The
transient solutions presented in Section 4 are devoid of this unphysical be-
havior. The shear stress and conduction temperature fields predicted by
the theory are not similar and, consequently, they vary with #; along the
centerline #; = 0. The shear stress decreases downstream monotonically
as #7933, The temperature exhibits a moderate rise from a value of 733°C
near the origin to a value of 910°C at 5.5 cm from the root.

Conditions for the existence of steady boundary layers can be inferred by
examining the asymptotic form of the solutions near the boundary (Gioia
and Ortiz, 1996). In the convection-dominated case, existence necessitates
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m+ %+ 1 > 0. Since this inequality involves material parameters only,
it can be interpreted as a material stability con